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1. INTRODUCTION
Community Question Answering (CQA) sites such as Yahoo Answers, StackOverflow, or Ask.com
have greatly contributed to the rise of the Social Web as they allow complex information needs
to be satisfied through a collaborative paradigm. Articulated queries submitted to those systems in
form of questions are processed by the crowd that generates and returns multiple possible answers.
The quality of the responses is in turn evaluated by community members who manually match each
question to its best answer. This collective process can serve high-quality answers to queries that
are most often answered unsatisfactorily by conventional search engines [Morris et al. 2010]. CQA
sites achieve effective results driven by the members’ altruism and by their intrinsic motivation
connected to the act of knowledge sharing [Nam et al. 2009; Jin et al. 2013], possibly reinforced by
ad-hoc incentive mechanisms [Jain et al. 2009].

The whole question-answering practice in CQA sites relies almost entirely on human actions,
mainly because the process of knowledge gathering required to answer a question is hard to auto-
mate, especially for very articulated queries [Lin and Katz 2003; Andrenucci and Sneiders 2005].
However, the task of matching a question to its best answer from a corpus of human-generated re-
sponses —as well as the more general task of ranking questions by quality— has received much
attention in the past decade, motivated by a number of practical applications.
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First, automated best answer selection can make up for the shortcomings that human agents have
when approaching this task. Users might not have enough time or attention span to consider all
the answers or to carefully evaluate their quality. Users may often designate as best the answers
that are provided quickly and that contain sufficient level of detail, but better answers can emerge
as the lifecycle of a question-answering thread evolves, with early answers being improved and
new responses being added later in time [Anderson et al. 2012]. Some questions might also receive
many answers in a relatively short time, making it difficult to manually spot high-quality ones with
no support of an automated ranking system. Also, like all open collaborative platforms, CQA sites
are open to abuse and user misconduct [Gyongyi et al. 2007; Dearman and Truong 2010], to which
the best answer selection process is not immune.

Second, reputation systems that are implemented on most CQA platforms could benefit from
mechanisms of objective quality assessment of answers. For example, in sites where the best answer
is elected by voting, the occurrence of the Matthew effect (the “rich get richer” phenomenon) is
hardly avoidable, leading to the emergence of a single highly voted answer among others. However,
users answering to the same question tend to be similar in terms both of expertise and delivered
quality of their answers [Anderson et al. 2012]. Therefore, rewarding mechanisms based on explicit
community feedback only can unfairly disadvantage participants who responded later in time.

Last, and perhaps most importantly, automatic best answer selection is a fundamental building
block for social search services [Freyne et al. 2007; Evans and Chi 2008]. Social search is a very
broad and multifaceted concept whose investigation is still in its early stages. One of its important
principles is to leverage the expertise of the crowd and the knowledge it generates to satisfy complex
information needs, also taking into account the social context. Not surprisingly, the few services that
have attempted to implement this paradigm are smart variations of classic CQA systems [Horowitz
and Kamvar 2010]. In this context, best answer selection is key to match questions to the most
appropriate user-generated content across multiple knowledge bases and more effectively compared
to standard information retrieval approaches. Additionally, machine-assessment of the best answer
is specially needed when the information is drawn from structured corpora where no explicit quality
feedback is given by the users (e.g., topical discussion fora).

For these reasons, the tasks of best answer selection and ranking have been explored extensively
over the last years (see §2 for an overview). Several ranking and classification algorithms trained us-
ing multiple families of features have been benchmarked against ground truths extracted from CQA
portals. As new features and algorithms were explored, the performance of the results increased
quite steadily. Nonetheless, the factors influencing the accuracy of question-answer matching are
plenty and entangled, often making difficult a comparison between different approaches and results.

Firstly, the feature space relevant to this task is vast and non-trivial to delve into, as it includes
signals from many different domains including information retrieval, natural language processing,
and network analysis. As a result, as we shall touch upon later, several research efforts have focused
in depth on selected feature subspaces, while fewer studies have attempted to provide a more holistic
view. Comparison between different results is made even more problematic when platform-specific
features are considered, which might sensibly improve the performance in particular case studies
but do not generalize well. On the other hand, as we shall discuss, not all the feature categories that
are informative for this type of task have been explored yet. Moreover, although a variety of algo-
rithms have been appraised in each of the two main approaches to the problem —classification and
ranking of best answers— systematical algorithmic comparisons still remain more infrequent in the
literature. Last, whereas previous research has focused on maximizing target performance metrics
(e.g., precision), the computational complexity of feature extraction has been far less discussed, thus
leaving an open question about whether it is “worth the effort” to use some feature families.

In addition to the complexity of the algorithmic and feature scope, the nature of the dataset is
a major element that can steer experimental outcomes. CQA communities are broadly divided into
focused, namely specialized on a well-defined area of knowledge (e.g., computer programming), and
non-focused (or general-purpose). Within each community type, the questions submitted can belong
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to a variety of sub-topics. Depending on the area of knowledge and type of forum, the factors that
determine a good answer can vary greatly [Agichtein et al. 2008].

Addressing all the issues above is clearly challenging. In this work we contribute to shed more
light on some of these issues with a study that stretches both in breadth and depth. Given a question
in input, we address the task of ranking by quality a set of available answers in order to maximize
the likelihood that the best response for the input query is returned on top.

To approach the problem from a very practical, application-oriented perspective, we probe the
space of several dimensions simultaneously —features, algorithms, and topics— as no previous
work did before. We gathered from Yahoo Answers the largest collection of question-answers pairs
collected so far for this task (more than 7M questions and nearly 40M answers) and we use the
vastest selection of features explored up to now, including 225 signals belonging to five distinct
families: text quality, linguistic similarity, distributional semantics, user characteristics, and net-
work structure. The distributional semantics features we include are novel for this task and many
of features (e.g., most of the network-based ones) have never been used in combination with the
others. All features we consider abstract from the specific forum type, so that the model we learned
could be trained on any CQA community where there are textual questions and responses, with a
best answer selected among them. Moreover, as Yahoo Answers has a general-purpose scope, we do
not specialize our study on a specific type of question-answer class. Instead, we investigate the per-
formance of feature families across four topical clusters of questions, automatically extracted from
simple and general features, and across two forms of questions that have been commonly considered
in the literature: general type of questions and manner questions. We rank answers with Learning
to Rank (which has been shown to be a very effective approach for ranking in this context [Sur-
deanu et al. 2011]) comparing a variety of machine learning tools for training: Logistic Regression,
ListNet, RankSVM, and Random Forests.

To summarize, we believe ours is the first study of best answer prediction (by ranking) that is
done at very large scale, on a general purpose CQA forum, using the largest feature space to date
(including novel features), and with a study on question topics, question types, and by exploring
several learning algorithms for the learning to rank framework.

Main results and findings include the following:

— Textual features are the most informative ones. However, we find that the very costly and widely
used family of textual similarity features has almost no additional predictive power when our
newly-proposed (and much faster to compute) set of distributional semantics features is included
in the model.

— Network features are somehow orthogonal to other feature types, yielding a sensible increase in
performance albeit more modestly than other signals. The most effective network features are not
the ones that have been considered most extensively in previous work, but are instead those based
on the concept of competition-network.

— The feature informativeness varies quite dramatically across question types. Text quality features
are more suited to predict the best answer for factual and subjective questions, whereas features
from the user profile are more predictive for discussion and poll-type questions.

— Our supervised model tops three of the latest, yet already widely popular methods for best answer
prediction. The most effective combination of features reaches up to 26% performance gain on
P@1 over the best state of the art methods.

The paper is organized as follows. After a review of the related work (§2), we first describe in
detail the feature families we consider (§3). We then describe the learning to rank framework we
use to combine the features together (§4). After introducing the Yahoo Answers dataset we collected
(§4.2), and the baselines (§4.3), we outline the experimental results in §4.4. We provide a discussion
about the relative performance over the baselines, and a comparison between feature sets and across
question types, before the final remarks in §5.
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2. RELATED WORK
Next, we discuss some background work in the field, describing studies on Community Question
Answering and Expert Finding, as well as some of the features that are most widely adopted in
previous approaches.

2.1. Community and non-Factoid Question Answering
Several approaches have been developed for finding and ranking answers in CQA.

One of the earliest and most widely known approaches adopts different measures of text quality
to find the best answer for a given question [Agichtein et al. 2008]. Intrinsic answer properties such
as grammatical, syntactic and semantic complexity, punctuation and typo errors are adopted, along
with question-answer similarity and user expertise estimations. We build on that work by picking all
the features reported as most effective, expanding them with new categories of features, and using
a more robust learning algorithm.

A consistent branch of this research field has focused on Non-Factoid QA systems, focusing
on Why and How questions. They often use CQA datasets for evaluations and adopt similar ar-
chitectures to the CQA answer ranking engines, although focusing more on linguistic features. The
importance of linguistic features for Non-Factoid QA has been assessed in several studies [Verberne
et al. 2008; Verberne et al. 2010; Verberne et al. 2011], showing how the adoption of semantic role
labeling based features [Bilotti et al. 2010] and deep and shallow syntactical structures [Severyn and
Moschitti 2012] can improve the performance of a Non-Factoid QA system. In our experiments, we
also adopt distributional linguistic features adding even more levels of lexicalization to the linguistic
representation.

Another line of approaches uses machine translation models to learn how to reformulate a ques-
tion into an answer so that the probability of the translation of question into the answer can be
calculated and the candidate answers can be ranked accordingly [Berger et al. 2000; Echihabi and
Marcu 2003; Riezler et al. 2007]. Recently, Matrix Factorization algorithms have been adopted for
the same goal [Zhou et al. 2013]. We adopt machine translation features, learning different transla-
tion models for different linguistic representations.

The study dealing with the largest-scale dataset has been done by Suredeanu et al. [2011]. They
combined a large amount of features, bringing together linguistic features, those based on transla-
tion and classical frequency and density ones. They tested their ranking model on a subset of Yahoo
Answers showing the effectiveness of each feature subset. As illustrated in §4.2, we compare our
method to theirs on the same dataset (Yahoo Answers Manner Questions), adding Distributional
Semantics, Text Quality, Expertise Network, and User-based features that were not previously con-
sidered.

In more recent years, new approaches based on lexical semantics emerged. Solutions leveraging
Wikipedia entities [Zhou et al. 2013] have been also used, showing potential in addressing the
retrieval of synonyms and hypernyms. Recurrent Neural Network Language Models [Yih et al.
2013] have been studied as well, confirming that lexical semantics is suitable to tackle the problem.

2.2. Expert Finding
A consistent branch of the studies on expert finding consists in casting the problem into an informa-
tion retrieval problem, using methods to model the relevance of candidate users to a given question
or topic. In profile-based methods, candidates are described by a textual profile and profiles ranked
with respect to an expertise query [Liu et al. 2005; Craswell et al. 2001], while in document-based
approaches documents relevant to the query are retrieved first, and then candidates are ranked based
on the co-occurrence of topic and candidate mentions in the retrieved documents [Balog et al. 2006;
Serdyukov and Hiemstra 2008].

Several slight variants to such approaches have been experimented during the few past years,
including topic-specific information retrieval approaches, where users’ expertise is calculated only
from the portion of their past history that is relevant to the question [Li et al. 2011]. The use of topic
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modeling [Riahi et al. 2012], as well as classification approaches [Zhou et al. 2012] as opposed to
information retrieval have been explored as well. Most often, these approaches rely on features of a
single type or on quite sparse sets of features of multiple types.

In some cases, the task of expert finding has been addressed from a slightly different perspec-
tive that goes under the label of “question recommendation”, that aims to recommend interesting
questions for a contributor that is willing to provide answers. Such approaches tend to privilege the
perspective of the answerer, for instance trying to assign questions also to people who have never
answered, to guarantee higher fairness of the system [Kabutoya et al. 2010]. One of the most com-
plete pieces of work in this direction uses a combination of collaborative filtering and content-based
approaches, showing that the content signal is the most powerful to predict good user-question as-
sociations [Dror et al. 2011].

As an alternative to text-based methods that rely on probabilistic frameworks or topic models [Liu
et al. 2010], network-based approaches can be leveraged to spot the users who are the most “expert”
with respect to a specific question. Graph-based models are particularly suited to capture the exper-
tise of individual contributors as they interact with their peers, not only limited to CQA portals.

In any social domain, the expertise may emerge from the complex interactions of users, and
can be modeled with the so-called expertise networks [Zhang et al. 2007a; Zhang et al. 2007b],
whose construction and structure is domain-dependent and can potentially mix heterogeneous
graphs [Smirnova and Balog 2011; Bozzon et al. 2013]. Examples of expertise networks include
scientific collaboration networks [Lappas et al. 2009], social networks [Zhang et al. 2007b; Zhang
et al. 2007b; Bozzon et al. 2013], communication networks [Dom et al. 2003; Fu et al. 2007], folk-
sonomies [Noll et al. 2009], and so on. Specifically, in CQA, as we will detail in §3.5, the expertise
networks have been modeled based on the asker-replier information [Jurczyk and Agichtein 2007],
the assignment of the best answer [Bouguessa et al. 2008; Gyongyi et al. 2007], and the competition
between answerers [Liu et al. 2011; Aslay et al. 2013]. In CQA, once the experts in specific domains
are identified, algorithms of question routing can be used to deliver relevant questions to them, also
taking into account their availability [Li and King 2010; Horowitz and Kamvar 2010] and workload
balance among the group of experts [Chang and Pal 2013].

Properties of expertise networks such as their shape, connectivity, and associativity patterns have
been investigated in depth in previous work [Chen et al. 2006; Zhang et al. 2007a; Jurczyk and
Agichtein 2007; Smirnova and Balog 2011]. In CQA specifically, studies on expertise networks
include the analysis of user behavior in terms of topical focus and discussion triggering [Gyongyi
et al. 2007], the characterization of the type of topics discussed [Adamic et al. 2008], and the relation
of tie strength with the effectiveness of the given answers [Panovich et al. 2012].

However, previous literature in CQA has focused mostly on how networks of expertise could
be leveraged to find the most expert users, as experts can likely provide high-quality answers. The
common assumption is that graph centrality on expertise network is correlated with expertise, and
this has indeed been shown extensively in the context of CQA [Jurczyk and Agichtein 2007; Aslay
et al. 2013]. Standard centrality metrics, such as PageRank and HITS, as well as custom scores
like ExpertiseRank [Zhang et al. 2007b] are commonly used for this purpose. Although in the past
centrality metrics in CQA expertise networks have been found to be less effective in the task of best
answer prediction compared to simple baselines such as the personal best answer count or ratio or
best answer ratio [Chen and Nayak 2008; Bouguessa et al. 2008], recent work has shown that some
combinations of expertise network and centrality metrics can indeed beat also the best answer ratio,
especially for some categories of questions [Aslay et al. 2013].

In network-based frameworks, expertise can be interpreted as topic independent, similarly to the
notion of authority on a graph, but expertise in CQA is more often topic-dependent. To address that,
a possible solution is to narrow down the focus on topic-induced subgraphs of the whole expertise
network, assuming that all the users who participate in it are relevant to the topic [Campbell et al.
2003; Aslay et al. 2013]. Alternatively, hybrid text-network approaches can be used, either with
linear combinations of scores modeling subject relevance and user expertise [Kao et al. 2010], or
by recurring to topic modeling to measure the relevance of the past users reply history to a specific
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topic, and link analysis to estimate their authority within that topic [Zhu et al. 2011]. We tackle this
problem by accounting topic relevance with textual features and expertise with network features,
combining them in a learning to rank fashion.

Last, we point out that, although we focus on centrality-based expert finding, alternative network-
oriented approaches have also been explored, such as label-propagation or random walk algorithms
[Fu et al. 2007; Serdyukov et al. 2008] or supervised approaches [Bian et al. 2009; Chen et al. 2012].

2.3. Comprehensive Approaches
Very few studies considered combinations of different types of features. The idea of using user
interactions, network-based features and quality estimators together for ranking the answers was
introduced by Bian et al. [2008]. More recently the same approach was re-proposed, with more
features and a more robust learning to rank algorithm, over StackOverflow data [Dalip et al. 2013],
focusing on features specifically designed for that dataset, like code blocks analysis. Our approach
follows the path of mixing features coming from different fields and adopts the same learning to
rank algorithm, but at the same time we introduce several new features, including deeper linguistic
ones and expertise based, dropping the ones that are too dataset-specific to preserve generality and
we evaluate our approach on a larger scale dataset.

3. FEATURES FROM CQA SITES
In this section we describe the five main families of features that can be extracted from most of
CQA sites. We will use them to train a learning-to-rank model aimed at the prediction of the best
answer for a question. The first three families (Text Quality, Linguistic Similarity and Distributional
Semantics) belong to the macro-group of textual features. Those features rely on the assumption
that the similarity between the question and the answer and the intrinsic quality of the answer’s text
are good proxies for the quality of the answer itself. The last two, User and Expertise network fea-
tures, reflect the intrinsic quality of user in answering a question by capturing either their historical
information or their interactions with other members of the community. Next we give an overview
for each family; the full list of features for each group is reported in the Appendix.

3.1. Text Quality (tq)
Text Quality features aim to estimate the intrinsic quality of an answer by capturing objective prop-
erties of the text composition. A summary follows.

Visual Properties. This group of features measures quantitatively some properties of the text. The
features belonging to this group count the number of whitespace violations (presence of multiple
contiguous whitespaces or missing spaces after a punctuation mark) and the whitespace density in
the text of the answer. The same counts are produced for capital letters and capitalization violations,
punctuation density and violations, the URLs in the text, the parts of the answer enclosed between
quotation marks, and so on. The number of capitalized words and the total count of punctuation
marks are also counted, for a total of 23 features that are widely adopted in the literature [Agichtein
et al. 2008; Dalip et al. 2013]. [Full feature list in Tab. VIII].

Readability. These features evaluate how easy is to read an answer. They consider the average
word length in terms of number of characters and syllables and the ratio of complex words in the
answer. They also include commonly used readability indices such as Kincaid, Ari, Coleman-Liau,
Flesch, Fog, Lix and Smog, for a total of 16 features that have been already tested in previous work
on CQA [Agichtein et al. 2008; Dalip et al. 2013]. The readability indices are modeled to capture
the education degree or the number of years of study necessary to understand a text. In practice,
they all combine heuristically quantitative metrics such as the average length of the sentences and
average length of the words, the number of characters and syllables, count of multi-syllable words,
and the presence of the words in whitelists. [Full feature list in Tab. IX].
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Informativeness. This group of features was considered since a reasonable answer must contain
some information that is not in the question, so we adopt 3 simple features that count the amount
of nouns, verbs and adjectives occurring in the answer but not in the question. [Full feature list in
Tab. X].

3.2. Linguistic Similarity (ls)
To the best of our knowledge, the most complete approach for generation of Linguistic Similarity
features has been considered by Surdeanu et al. [2011]. They adopt different levels of linguistic
representation of a text that can be obtained using NLP algorithms to construct tokens that are
then given in input to different similarity and overlap measures. This part of our work follows their
approach.

The analysis of both questions and candidate answers with an NLP pipeline allows us to build
representations of the text using different lexicalization levels: words, stems, lemmas, lemma and
PoS tag concatenations, named entities and super senses as tokens. Specifically, we used the im-
plementation offered by ClearNLP1 v.3.2. The representations are lists of token n-grams. As an
example, the sentence “The man plays the piano”, after stopword removal, can be represented as
word unigrams (man, plays, piano) or as lemma+pos unigrams (man:NN, play:VBZ, piano:NN) or
as super-sense bigrams (noun.person-verb.competition, verb.competition-noun.artifact).

We also tag the text with dependency parsing and semantic role labeling [Gildea and Jurafsky
2002], so we can extract chains from them in the same way we extract the n-grams. For the depen-
dency parsing the chains are constructed in the form of “dependent-relationType-head” but we can
extract also more general chains that do not contain the relationType. For the semantic role labeling,
the chain has the form of “predicate - argumentType - argument”. Also in this case the argument
type can be omitted. The length of the chain can be increased concatenating the chains of length
one that share intermediate elements. For example, by concatenating unlabeled dependencies from
the previous example we obtain the chains: “man - plays” and “piano - plays”.

Because longer chains do not usually add valuable information because of their sparsity [Sur-
deanu et al. 2011] we decide not to adopt them. The tokens that compose the chain can also
be at different lexicalization degrees, but to minimize the sparsity we adopted only lemmas and
super senses. As for our example, from the sentence “The man plays the piano” we extract la-
beled dependencies lexicalized with lemmas (“piano - dobj - play”, “man - nsubj - play”), their
unlabeled versions (“piano - play”, “man - play”) and the versions with super-sense lexicaliza-
tion (“noun.artifact - dobj - verb.competition”, “noun.person - nsubj - verb.competition”) and
(“noun.artifact - verb.competition”, “noun.person - verb.competition”). The same is done with
the semantic role labeling annotations, the possible chains are with argument labels with lemma
lexicalization (“play - A0 - man”, “play - A1 - piano”), without argument labels with lemma lex-
icalization (“play - man”, “play - piano”), with argument labels and super-sense lexicalization
(“verb.competition - A0 - noun.person”, “verb.competition - A1 - noun.artifact”) and without argu-
ment labels with super-sense lexicalization (“verb.competition - noun.person”, “verb.competition -
noun.artifact”).

To compare and assess how linguistically similar a question is to candidate answer, we obtain
the chains at different lexicalization levels for both them and then apply a similarity metric to the
obtained chains.

For example, we want to compare the question “Is Guinness a kind of beer?” with the passage
“Guinness produces different kinds of beers”. We extract the chains of lemma bigrams (excluding
stopwords) for the question and we obtain [be guinness, guinness kind, kind beer]. We do the same
for the passage and we obtain [guinness produce, produce different, different kind, kind beer]. A
simple similarity metric could be the number of common tokens, in this case we have one common
tokens kind beer.

Next, we list all the similarity metrics that we apply to the chains.

1https://github.com/clir/clearnlp
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Overlap. The overlap features count the ratio of tokens in common between the question and the
answer as |tq∩ta|

|tq| , where tq is the set of tokens belonging to the question and ta the set of tokens
belonging to the answer. With this simple overlap formula we calculate the overlap of unigrams
with all the different lexical levels, resulting in 6 features. Other 15 features are obtained calculating
the overlap of 2-grams, 3-grams and 4-grams of all the lexicalizations. We consider named entities
already as n-grams and we do not split them further, as any subset of tokens would disrupt the
meaningful association of words of that entity.

We also calculate the overlap of the dependency chains and semantic role labeling chains, both
labeled and unlabeled and both with lemma and super-sense lexicalizations, resulting in 8 features.
For the different lexicalizations of the unigrams we also calculate the Jaccard Index as |tq∩ta|

|tq∪ta| re-
sulting in additional 6 features. We do not calculate the Jaccard index for the n-grams and for the
dependency and semantic role labeling chains because of their sparsity. [Full feature list in Tab. XI].

Frequency. We use standard Information Retrieval techniques to obtain a measure of similarity
between question and answer that takes into account the frequency of the tokens in the texts and in
the whole corpus. We assign scores to the question-answer pairs according to the Tf-Idf weighting
scheme, to the BM25 weighting scheme and to the Language Modeling (with Dirichlet priors [Zhai
and Lafferty 2001]) for all the different lexicalization levels except for the named entities, for a total
of 15 features. [Full feature list in Tab. XII].

Density. We adopt a slight modification of the Minimal Span Weighting (MSW) proposed by
[Monz 2004]. MSW is a proximity-based metric for document retrieval, based on a linear com-
bination of i) the minimal size (or span) of a text excerpt that covers all the terms in common
between the query and the document, ii) the ratio of query terms that match the document, and iii)
the global text similarity between the query and the document, computed with the Lnu.ltc weighting
scheme [Buckley et al. 1995].

The text similarity intercepts global similarity, the span intercepts local similarity and the match-
ing term ratio counterbalances the local similarity; for example, in the case only one query term of
five matches the document, the span component would return a value of 1, while the matching term
would be 1

5 . To obtain a high local similarity, the highest number of terms from the question should
be present in the smallest span of terms in the answer.

As we capture the concept of global similarity with a whole set of other features (e.g., frequency-
based), we retain only the local similarity part, resulting in the following formula:

(
| tq∩ ta |

1+max(mms)−min(mms)

)(
| tq∩ ta |
| tq |

)
(1)

where tq and ta are the sets of tokens respectively of the question and the answer; max(mms) and
min(mms) are the initial and final location of the shortest sequence of answer tokens containing
all the question tokens. We calculate it for all the different lexicalization levels, thus obtaining 6
features. [Full feature list in Tab. XIII].

Machine Translation. Research in Machine Translation (MT), a sub-field of computational lin-
guistics, investigates the use of computational methods to translate text from one language to an-
other. Due to the availability of aligned corpora, statistical approaches to MT have rapidly grown
in the last decade, leading to better phrase-based translations. The objective of MT in CQA is to
“bridge the lexical chasm” between the question and the answer. We calculate the probability of the
question being a translation of the answer P(Q | A) and use it as a feature:
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P(Q | A) = ∏
q∈Q

P(q | A)

P(q | A) = (1−λ )Pml(q | A)+λPml(q |C)

Pml(q | A) = ∑
a∈A

(T (q | a)Pml(q | A))
(2)

where the probability that the question term q is generated from answer A, P(q | A), is smoothed
using the prior probability that the term q is generated from the entire collection of answers C,
Pml(q |C) and λ is the smoothing parameter. Pml(q |C) is computed using the maximum likelihood
estimator.

As the translation of a word to itself P(w | w) is not guaranteed to be high, we set P(w | w) = 0.5
and re-scale P(w′|w) for all the other w′ terms in the vocabulary to sum up to 0.5, so that ∑w′∈W (w′ |
w) = 1. This is needed for the adoption of translation models for retrieval tasks, as the exact world
overlap of question and answer is a good predictor [Surdeanu et al. 2011].

Calculating the translation models for all the lexicalization degrees and for all the combina-
tions of dependencies and semantic role labeling chains, we obtain 14 features. [Full feature list
in Tab. XIV].

Others. We consider 4 additional miscellaneous features: the length of the exact overlap of the
sequences of words in the question and the answer normalized by the length of the question, the
length ratio of the question and the answer, the inverse of the length of the answer and the inverse
of the length of the question. [Full feature list in Tab. XV].

3.3. Distributional Semantics (ds)
In addition to features that have been used in previous work, we propose to use distributional se-
mantics features for the first time in the context of best answer prediction.

Distributional Semantics Models (DSMs) have been increasingly used in Computational Lin-
guistics and Cognitive Science. These models represent word meanings through contexts: different
meanings of a word can be accounted for by looking at the different contexts in which the word
occurs. Philosophical insight of distributional models can be ascribed to Wittgenstein’s quote “the
meaning of a word is its use in the language” [Wittgenstein 1953]. The idea behind DSMs can be
summarized as follows: if two words share the same linguistic contexts they are somehow similar
in their meaning. For example, analyzing the sentences “drink a glass of wine” and “drink a glass of
beer”, we can assume that the words “wine” and “beer” have similar meaning because they appear
in proximity of the same set of tokens (drink, a, glass, of).

This insight can be implemented with a geometrical representation of words as vectors in a se-
mantic space. Each term is represented as a vector whose components are the words occurring in the
contexts in which that term appears; the words in the vector are weighted by the number of contexts
in which they occur. The granularity of the context can vary from an arbitrarily small window of
neighboring terms up to the whole set of terms in the document.

For a detailed analysys of the motivations, philosofical background and practical usage of DSMs
please refer to [Karlgren and Sahlgren 2001].

As an example, given the sentences “drink a glass of wine”, “wine is made of grapes”, “drink a
glass of beer” and “beer is made of hops”, and considering word occurring in the same sentence as
context, we can represent the words “wine” and “beer” with the vectors shown in Figure 1, simply
counting the number of occurrences.

Semantic spaces have important advantages over other textual features. They do not require spe-
cific text operations, only tokenization is always needed. They are also language-agnostic and in-
dependent of the specific corpus. This implies low computational cost and independence from any
external source.
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Fig. 1. An example of vector representation of words in a DSM

The earliest and simplest formulation of such a space has root in the Vector Space Model [Salton
et al. 1975], one earliest models in Information Retrieval. Since then, they have been used in
several NLP tasks [Basile 2011; Collobert et al. 2011; Turian et al. 2010], including synonym
choice [Landauer and Dumais 1997], semantic priming [Landauer and Dumais 1997; Burgess et al.
1998; Jones and Mewhort 2007], finding similarity of semantic relations [Turney 2006; Turney and
Littman 2005], essay grading [Wolfe et al. 1998; Foltz et al. 1999], automatic construction of the-
sauri [Schütze and Pedersen 1995] and word sense induction [Schütze 1998]. A useful survey of the
use of VSMs for semantic processing of text has been done by Turney et al. [2010]; an analysis of
some compositional operators is described in the work by Mitchell et al. [Mitchell and Lapata 2010].
Naturally, also several applications to IR exist [2008], including term-doc matrix reduction [Deer-
wester et al. 1990] and ambiguity resolution [Schütze and Pedersen 1995; Basile et al. 2011].

DSMs have not been used in any task directly related to CQAs, so far. Nevertheless, the ability of
these models to capture paradigmatic relations between words is particularly convenient to match
answers to questions, when the pure syntactic similarity could not always capture the relatedness of
concepts. Next, we first describe how we build the semantic space, then we describe the DSM we
adopt and finally we describe our strategy to integrate it inside our best answer predictor.

Co-occurrence matrix construction. Our semantic spaces are modeled by a co-occurrence matrix.
The linguistic context taken into account is a window w of co-occurring terms. In our experiments
we adopt a window of size 5 centered on the current term. Given a reference corpus2 and its vocab-
ulary V , a n×n co-occurrence matrix is defined as the matrix M = (mi j) whose coefficients mi j ∈R
are the number of co-occurrences of the words ti and t j within a predetermined distance w.

The term× term matrix M, based on simple word co-occurrences, represents the simplest seman-
tic space, called Term-Term co-occurrence Matrix (TTM).

An example term× term matrix M is shown in Figure 2. The corpus from which it is obtained
are the same four sentences of Figure 1: “drink a glass of wine”, “wine is made of grapes”, “drink a
glass of beer” and “beer is made of hops”.

In the literature, several methods to approximate the original matrix by rank reduction have been
proposed. Dimensionality reduction allows for the discovery of high-order relations between en-
tries and cancels noisy co-occurrences. We exploit four methods for building our reduced semantic
spaces: Latent Semantic Analysis (LSA), Random Indexing (RI), LSA over RI, and Continuous
Skipgram Models. All these methods produce a new matrix M̂, which is a n× k approximation of
the co-occurrence matrix M with n row vectors corresponding to vocabulary terms, while k is the
number of reduced dimensions.

Latent Semantic Analysis. Latent Semantic Analysis [Deerwester et al. 1990] is based on the
Singular Value Decomposition (SVD) of the original matrix M. M is decomposed in the product of
three matrices UΣV>, where U and V are orthonormal matrices whose columns are the right and
left eigenvectors of the matrices M>M and MM> respectively, while Σ is the diagonal matrix of the
singular values of M placed in decreasing order.

2The corpus could be the collection of documents indexed by the QA system, but also some external text collection.
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⊤Σk

Fig. 3. A depiction of SVD matrices

SVD can be applied to any rectangular matrix, and if r is the rank of M, then the matrix M̃ =
UkΣkV>k of rank k� r, built choosing the top k singular values, is the best rank k approximation of
M. The approximated M̃ s shown in Figure 3.

Since the matrix MM> corresponds to all possible combinations of any two terms, it is possible
to compute the similarity between two terms by exploiting the relation

MM> = UΣV>VΣ
>U> = UΣΣ

>U> = (UΣ)(UΣ)>

In the case of the k-approximation of M, the complexity of the computation of the similarity between
any two terms is reduced.

ACM Transactions on Information Systems, Vol. V, No. N, Article A, Publication date: YYYY.



A:12

Random Indexing. We exploit Random Indexing (RI), introduced by Kanerva et al. [1988], for
creating the DSM based on RI. This technique allows us to build a semantic space with no need for
matrix factorization, because vectors are inferred using an incremental strategy. Moreover, it allows
to solve efficiently the problem of reducing dimensions, which is one of the key features used to
uncover the latent semantic dimensions of a word distribution.

RI is based on the concept of Random Projection according to which randomly chosen high
dimensional vectors are “nearly orthogonal”. This yields a result that is comparable to orthogonal-
ization methods, such as SVD [Landauer and Dumais 1997], but saving computational resources.

In [Sahlgren 2005] the authors provide with a clear and motivated introduction to RI, while a
more detailed dissertation about RI, its construction and the syntagmatic and paradigmatic use of
context can be found in [Sahlgren 2006]. In [Cohen et al. 2010] scalability issues are discussed in
detail, alongside with the suggestion of the capability of RI to find implicit relations among words.

Formally, given an n×m matrix M and an m× k matrix R made up of m k-dimensional random
vectors, we define a new n× k matrix M′ as follows:

M′n,k = Mn,mRm,k k << m (3)

The new matrix M′ has the property to preserve the distance between points. This property is
known as Johnson-Lindenstrauss lemma [Johnson and Lindenstrauss 1984]: if the distance between
any two points of M is d, then the distance dr between the corresponding points in M′ will satisfy the
property that dr = c ·d (where c is a constant). A proof of that property has been done by Dasgupta
et al. [Dasgupta and Gupta 1999].

The product between M and R is not actually computed, but it corresponds to building M′ incre-
mentally, as follows:

(1) Given a corpus, a random vector is assigned to each term. The random vector is high-
dimensional, sparse and with very few elements with non-zero values {−1,1}, which ensures
that the resulting vectors are nearly orthogonal, and the structure of this vector follows the
hypothesis behind the concept of Random Projection.

(2) The semantic vector of a term is given by summing the random vectors of terms co-occurring
with the target term in a predetermined context (document/sentence/window).

An example of the construction of the term vectors is shown in Figure 4

Latent Semantic Analysis over Random Indexing. Computing LSA on the co-occurrence matrix
M can be a computationally expensive task, as the vocabulary V can reach thousands of terms. Here
we propose a simpler computation based on the application of the SVD factorization to M′, the
reduced approximation of M produced by Random Indexing. Sellberg and Jonsson [2008] followed
a similar approach for the retrieval of similar FAQs in a QA system. Their experiments showed that
reducing the original matrix by RI resulted in a drastic reduction of LSA computation time, at the
cost of a very slight decrease of performance.

Continuous Skip-gram Model. A quite different DSM aims at learning distributed representations
of words with neural networks, because they have better performances than LSA in preserving linear
regularities among words [Mikolov et al. 2013b] and the latest models are computationally less
expensive, so they scale better on large data sets.

Mikolov et al. [2013a] construct a really scalable log-linear classification network, using a simpler
architecture than previous work, where neural networks are usually constructed with several non-
linear hidden layers [Bengio et al. 2003]. Two such simpler networks are proposed in that work: the
Continuous Bag-of-Words Model and Continuous Skip-gram Model. While both are shown to be
effective in semantic-syntactic word relationship learning and sentence completion tasks, the former
is faster to train, while the latter has better performances at the cost of slightly longer training time.
Although both are really scalable, for our experiments we decided to adopt the latter one for its
accuracy.
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glass -1 0 0 0 1 0 0
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beer 0 -1 2 0 1 -1 1

Fig. 4. Term Vector construction in Random Indexing. Context vectors are random vectors.
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Fig. 5. The architecture of the Continuous Skip-gram Model
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The Continuous Skip-gram Model builds on Feedforward Neural Networks [Bengio et al. 2003],
but it consists only of input, projection and output layers, so removing the hidden layer. As most
of the complexity is caused by the non-linear hidden layer, this improves the learning efficiency at
the expenses of a representation that might be less precise, but enables to learn models with bigger
amounts of data. The model, shown in Figure 5, iterates over the words in the dataset and uses each
word wt as an input to a log-linear classifier with continuous projection layer. What it outputs is a
prediction of the words within a certain range before and after the input word.

As the words that are more distant from the input word are less related to it, the model adopts a
randomization policy: if c is the fixed range before and after a word, a value r is obtained picking
randomly a value between [1,c]. Then r words before the current and r words after the current are
used as correct labels, from wt−r to wt−1 and from wt+1 to wt+r. Randomizing the window size with
a random value between 1 and c is a way to avoid overfitting: setting a fixed parameter c might
indeed bias the final result, while having different models with a random r in [1,c] smoothens that
risk.

At the end of the training phase, the weights associated with the projection layer are used as vector
representations for each word. The resulting encoding captures meaningful word representations,
where words of similar meaning have nearby representations.

Distributional Semantic Models Integration in Question Answering. We now discuss how to
leverage the word vector representations to match questions to the best answers. We use word vec-
tor representations for building the sentence level vector representation by summing the vectors of
the words that appear in the sentence. This way we obtain vector representations for questions and
answers and we can compute their cosine similarity to obtain a semantic similarity measure. This
measure becomes one feature used in the ranking of the answers. Questions and answers are usually
short pieces of text and this makes this strategy more suitable.

In DSMs, given the vector representation of two words u = (u1, . . . ,un)
> and v = (v1, . . . ,vn)

>,
it is always possible to compute their similarity as the cosine of the angle between them:

cos(u,v) = ∑
n
i=1 uivi√

∑
n
i=1 u2

i ∑
n
i=1 v2

i

(4)

However, the user’s question and the candidate answer are sentences composed by several terms.
To compute the similarity between them we need a method to compose the words occurring in these
sentences. It is possible to combine words through vector addition (+). This operator is similar
to the superposition defined in connectionist systems [Smolensky 1990], and corresponds to the
point-wise sum of components:

s = u+v (5)

where si = ui + vi.
Addition is a commutative operator, which means that it does not take into account any order

or underlying structures existing between words in both questions and answers. We do not exploit
more complex methods to combine word vectors as they do not clearly outperform the simple vector
addition [Mitchell and Lapata 2010]. For a deeper analysis of compositionality in distributional
semnatics and its connection with syntax and formal semantics, refer to [Baroni et al. 2014].

Given a phrase or sentence s, we denote with s its vector representation obtained applying addition
operator (+) to the vector representation of terms it is composed of. Furthermore, it is possible to
compute the similarity between two phrases / sentences exploiting the cosine similarity between
vectors (Equation 4).

Formally, if q = q1,q2, . . . ,qn and a = a1,a2, . . . ,am are the question and the candidate answer re-
spectively and each qi and ai is a term present in them, we build two vectors q and a which represent
respectively the question and the candidate answer in a semantic space. Vector representations for
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question and answer are built applying the addition operator to the vector representation of words
belonging to them:

q = q1 +q2 + . . .+qn

a = a1 +a2 + . . .+am
(6)

The similarity between q and a is computed as the cosine similarity between them.
For example, we want to compare the question q “Is Guinness a kind of beer?” with the passage

a1 “Guinness produces different kinds of stouts” and the passage a2 “Apple produces different kinds
of computers”. The vector representations of the (non-stopword) words are:

vis = [0.1,0.2,0.3,0.25]
vguinness = [0.7,0.1,0.12,0.09]
vkind = [0.2,0.1,0.65,0.5]
vbeer = [0.8,0.05,0.1,0.12]
vproduces = [0.3,0.4,0.1,0.04]
vdifferent = [0.1,0.21,0.1,0.12]
vkinds = [0.22,0.08,0.67,0.48]
vstouts = [0.82,0.04,0.11,0.11]
vapple = [0.44,0.71,0.24,0.14]
vcomputers = [0.05,0.84,0.2,0.6]

It is easy to see how the vectors for beer and stout and the vectors for kind and kinds are really
similar to each other (i.e. close in the semantic space).

The representation for q, a1 and a2 are the following:

q = vis + vguinness + vkind + vbeer = [1.8,0.45,1.17,0.96]
a1 = vguinness + vproduces + vdifferent + vkinds + vstouts

= [2.14,0.83,1.1,0.84]
a2 = vapple + vproduces + vdifferent + vkinds + vcomputers

= [1.11,2.24,1.31,1.38]

The cosine similarity among the q and the two passages a1 and a2 is:

cos(q,a1) = 0.9846
cos(q,a2) = 0.7794

So a1 would be ranked higher than a2 in a rank list.
For computing the Distributional Semantics features for this set of experiments, we construct

the M matrix both using Wikipedia as a corpus and using the set of all the answers in the training
set obtained from the Yahoo Answers 2011 dataset that we use for the evaluation (see §4.2 and
§4.4). We do so to use both general purpose texts incorporating common sense knowledge and
knowledge that is specific to the dataset we want to actually use. The number of dimensions of the
vector representations for all the methods is 400, stopwords are removed and only unigrams are
considered. We calculate the cosine similarity scores using vectors from the three types of semantic
spaces constructed on both the corpora, resulting in 8 features. [Full set of features in Tab. XVI].

3.4. User Features (u)
A considerable part of the features are related to the user-centric activity, to capture their behavior
and history. The question and answer history and some standard fields from the public profile de-
scription are usually available in all major CQA platforms. We also assume that questions are tagged
with a category, which is the case for most of the communities that enforce a strict category systems
or allow the possibility of collaborative tagging. If a categorization is not available, topic models
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could be used to extract it. Although most of the features we present here have been used in prior
literature of best answer selection [Agichtein et al. 2008], the decomposition of the same features
across different question categories has never been explored in this context. The sub-groups of user
features are summarized next.

User Profile. The user profile contain information that might be a good proxy for the level of
user’s involvement in the community. These include: the presence of a resume, of a textual self-
description of the user, of a title and a profile picture (surprisingly, a remarkably good estimator of
expertise [Gı̂nsca and Popescu 2013]) and the amount of time the user has been registered on the
platform at the time the question was asked (we refer to it as age for simplicity), for a total of 5
features. [Full set of features in Tab. XVII].

Question and Answers. The number of questions the user asked, deleted, answered, flagged,
starred, and their normalized versions by user age are the basic indicators for user activity. In ad-
dition to that, we also compute the ratio of those values divided by all the questions asked. We
replicate the same features we calculated on the questions asked by the user also on the answers
given by the user, adding also features about the thumbs up and down received by the answers and
their ratio and delta. Overall, we define 19 features for the questions and 19 for the answers. [Full
set of features in Tab. XVIII].

Question categories. We replicate the same features defined for the question and answer history
of the user, but considering only the category of the question actually asked. For example, if the
question belongs to the category “sports” we count the questions asked and the answers given by
the users in that category. This will help us estimate the user expertise and how much the user is
engaged in the specific topic rather than his generic expertise or interest in different topics than the
one the asker is interested in. So we add additional 19 features for questions in the category and
other 19 for the answers in the category. We also add 3 additional features that consider the entropy
H of discrete probability distribution p obtained by counting the number of questions, the number
of answers and the combined number of question and answers in all the different categories (‖p‖ is
the number of categories).

H(p) =−
‖p‖

∑
i=0

pi log2 pi (7)

This allows us to evaluate how specific (high entropy) or spread out (low entropy) the user knowl-
edge (or interest) is. [Full set of features in Tab. XIX].

Behavioral. Other features are related to the user behavior on the system. We count how many
positive and negative votes are provided, plus their deltas and ratios, we measure the answering
speed as the temporal gap between the time of the question and answer publications, and so on, for
a total of 8 features. [Full set of features in Tab. XX].

3.5. Expertise Network Features (n)
The network features we propose arise from expert finding literature, where a content-agnostic
analysis of the interactions between participants in CQA is shown help rank people by their gen-
eral expertise in answering questions. For instance, users who provided high-quality answers (i.e.,
marked as best answers) to many questions, will likely provide good answers in future interactions
as well. Also, the estimation of the users’ expertise may not depend just on their direct interactions,
but also from the interactions of other users, in a recursive fashion. For example one might imagine
that, given a specific domain of knowledge, answering correctly a question made by an expert is a
better indication of expertise than answering a question made by a newbie.

These considerations has motivated past research in the study of Expertise Networks [Zhang
et al. 2007a], especially for CQA. Expertise Networks are weighted graphs where nodes are users
and weighted edges model interactions that account for the flow of activity, knowledge or status
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Fig. 6. The graph of relations between askers, questions, and answerers (left) and the three types of Expertise Networks
derived by it (right).

differences among peers. In the past, three main Expertise Networks have been defined and studied
for CQA. We provide visual examples for each in Figure 6.

The first is the Asker Replier Network (ARN) [Jurczyk and Agichtein 2007], where directed edges
flow from askers to answerers and are weighted by the number of replies. The second is the Asker
Best-Answerer Network (ABAN) [Bouguessa et al. 2008; Gyongyi et al. 2007], where directed edges
flow from askers to the best answerers and are weighted by the number of best answers given. The
last is the Competition-Based Expertise Network (CBEN) [Aslay et al. 2013], where edges flow
between all the users who answered the same question towards the user who gave the best answer
to that question; the possibility of building such a network is conditioned by the possibility for the
users to explicitly mark the best answer, which is most often true in large scale CQAs. The advantage
of ARN is that it needs less information to be built but, ignoring the signal coming from the best
answer, it considers all the answers to have equal value. ABAN addresses this problem but on the
other hand it disregards the information of people who answered and whose answer was not selected
as the best. CBEN was proposed to take into account both aspects and to capture at the same time
the inherent competition that exists between answerers to get awarded with the best answer. Also,
no relation between asker and answerer is represented in CBEN under the assumption that asking
a question is not necessarily related to a lack of expertise [Zhang et al. 2007a; Zhang et al. 2007b],
especially in broad general purpose question answering communities.

The application of graph centrality metrics to the Expertise Networks mentioned above produces
a ranking of the users based on their expertise. Depending on the specific combination of network
and centrality, the ranking might convey different meanings, but in all the cases users with higher
scores are supposed to have higher expertise compared to their peers with lower scores. In previous
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work, this assumption was validated by multiple experiments and some specific network-centrality
combinations (PageRank on ARN, indegree on ABAN, HITS on CBEN) have proved to work best
in the task of best answer prediction [Aslay et al. 2013]. In this work we aim to include in a learn-
ing to rank framework a wide set of features, therefore we do not restrict ourselves to specific
pairs but we consider instead all the combinations of Expertise Networks (ARN, ABAN, CBEN)
with the centrality metrics that have been applied to them in past work (PageRank [Page et al.
1999], HITS [Kleinberg 1999], indegree) for a total of 9 features. We consider networks built on the
full question-answer dataset with no distinction of topic, as we want to measure general expertise
with network features and account for relevance with the textual features. [Full set of features in
Tab. XXI]

4. EXPERIMENTAL EVALUATION
Next we describe the problem under study and the framework we use to address it, along with four
baselines we compare our method against.

Problem statement. Given in input a question q and the set of its answers A(q), among which
exactly one answer a∗ ∈A(q) has been selected as best answer, output a rank of the answers in the set
A(q) that has a high likelihood of a∗ being placed high in the rank. This problem is a generalization
of the best answer selection, and can be reduced to it if only the first element in the ranking is
considered, but allows a more detailed analysis of the results and a richer comparison between
methods.

4.1. Learning to rank for best answer prediction
We address the problem using a Learning to Rank approach, where question-document pairs (q,d)
are labeled with relevance judgments that indicate the degree of relevance of the document d with
respect to query q. Each pair is represented by a set of features that are usually an indication of
the degree of similarity between q and d, but also information about q and d in isolation, such as
their length or the PageRank of web documents. Each pair is treated as a single datapoint and a set
of datapoints can be used for training purposes, to learn a function to predict the best ranking of
different documents according to a query.

Several algorithms have been proposed for this goal in the literature [Liu 2011]. We opted for
Random Forests (RF) [Breiman 2001] because of its resilience to overfitting, a problem that may
affect our experimental setting due to the size of our dataset, and because of the successful results
in several use cases related to CQA [Dalip et al. 2013] and in other large scale retrieval experi-
ments [Mohan et al. 2011].

Let xi = φ(d,q), where φ is a feature extractor, and xi is a m-dimensional vector. Let D =
(x1,y1), . . . ,(xn,yn) be a set of query-document pairs xi and their associated relevance ratings yi ∈Y .
In the specific case of our question-answering dataset, the relevance is maximum for the best answer
and zero for all the other answers.

The RF algorithm trains a model H such that H(xi) ≈ yi and so that the ranking of all the docu-
ments d appearing in pair with a query q according to H(xi) is similar to the ranking according to
yi. The pseudocode of the procedure is listed in Algorithm 1.

The main idea of RF is to apply a prediction tree —specifically, a regression tree in our case—
to M subsets of D and then average the results. A sample Dt is extracted with replacement from D
(step 2). A set K of features is randomly picked from the feature set, so that |K| ≤ m (step 3). A
regression tree is induced from Dt using the features in K (step 4). The whole process is repeated
r times and the outputs of all the single trees are averaged to obtain the function H (step 6). The
use of different samples of the data from the same distribution and of different sets of features for
learning the individual regression trees prevents the overfitting.
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Algorithm 1 Random Forests
Require: D = (x1,y1), . . . ,(xn,yn),r > 0

1: for i← 1 to r do
2: Dt ← sample(D)
3: K← roandomPick(m)
4: hi← buildDecisionTree(Dt ,K)
5: end for
6: H()← 1

r ∑
r
i=1 hi()

7: return H()

In our experiments the queries are the questions and the documents are the candidate answers. In
our evaluation we use the implementation provided by the RankLib library3.

4.2. Dataset
The instance of CQA we consider for our experiments is Yahoo Answers, because of its popularity
and richness of content. Launched in 2005, it is one of the largest general purpose CQA services
to date, hosting questions and answers on a broad range of topics, categorized through a predefined
two-level taxonomy. There are 26 predefined Top-Level Categories (TLC), such as Politics, Sports
or Entertainment, and a growing number of Leaf-Level Categories (LLC) –more than 1,300 at the
time of this study– such as Makeup or Personal Finance. Similarly to other CQA portals, Yahoo
Answers follows a strict question-answer format, with questions submitted as short statements with
optional detailed description, and a mandatory leaf-level category that is assigned by the asker.
Questions have a lifecycle of states that goes from open, to voting and finally to resolved, and
users can actively moderate content using several feedback mechanisms, such by marking spam or
abusive content, adding stars to interesting questions, voting for best answers, and giving thumbs-
up or thumbs-down ratings to answers. Among all the feedback signals, the most important is the
selection of the best answer, which is designated by the asker or, if the asker does not provide it
after a given time, it is selected by the community with majority vote. The process of best answer
selection is important not only to reward contributors according to the Yahoo Answers incentive
scheme4, but also for archival purposes, as the best answer will be given evidence in the page and
will serve users who might have the same question in the future.

4.2.1. Yahoo Answers 2011. We first collected a data sample from Yahoo Answers related to the
period between January and December 2011, for a total of > 7.2M resolved questions with best
answer assigned by the asker, > 39.5M answers and > 6.1M unique users. As our goal is to select
the best answers among the ones provided, we need to consider only questions with a minimum
number of answers for the task to be meaningful. For this reason, all the answers we selected for
the dataset have at least 4 answers. The distribution of number of answers per question is shown
in Figure 7. The dataset contains the text of the question and answers, their metadata (timestamp,
question category, number of thumbs up and down, best answer mark) and the metadata associated
to the user involved in the process (user self-description, subscription date, number of questions
asked and answers given, number of best answers, presence of thumbnail photo in the profile). Each
question has only one answer marked as the best one.

As Yahoo Answers is a general purpose portal, not only it covers different topics but it also
hosts a broad variety of question types. In practice, every forum category has some mix of requests
for factual information, advice seeking and social conversation or discussion [Harper et al. 2009].
The most refined categorization obtained on Yahoo Answers so far has been proposed by Aslay et

3http://sourceforge.net/p/lemur/wiki/RankLib/
4A new user is granted 100 points and asking a question costs 5 points. Several user actions are worth new
points, among which the submission of an answer that is the most rewarding one (as it is worth 10 points).
Detailed scheme available at: http://answers.yahoo.com/info/scoring system
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Fig. 7. Distribution of number of answers per question. Questions with less than 4 answers are not included in the dataset.

al. [2013], who extended the seminal work by Adamic et al. [2008] and used k-means to cluster Ya-
hoo Answers leaf level categories using features such as the average number of replies to a question
and the average number of characters in a reply, and some activity-based features such as the pro-
portion of questions with contradictory answer ratings (thumbs up vs. thumbs down). The optimal
R2 was obtained for k = 4, corresponding to the following main question types: factual-information
seeking (31% of the questions), subjective-information seeking (32%), social discussion (10%), and
poll-survey conducting (27%). We use this categorization to compare the feature performance also
across question types.

4.2.2. Yahoo Answers Manner Questions. To compare our results directly against some state-of-
the-art methods, we decided to replicate the experiments with a publicly available dataset5 that con-
tains a sample of manner questions collected from the US Yahoo Answers site. Manner questions are
those questions that ask how to do something. Following what was done in previous work [Surdeanu
et al. 2011], the manner questions are extracted following two simple heuristics that aim at preserv-
ing only high quality questions and answers. This is done by retaining all the questions that i) match
the regular expression: how (to | do | did | does | can | would | could | should), and
ii) have at least four words, out of which at least one is a noun and at least one is a verb. This process
yields 142,627 questions and 771,938 answers, with an average of 5.41 answers for each question.

4.3. Baselines
We compare our approach with four different baselines.

— BM25. Standard ranking function used in information retrieval to rank matching documents ac-
cording to their relevance to a given search query. We consider the question as query and the
answers as documents. We chose this baseline over other IR baselines because it is the best per-
forming one in our dataset.

— Finding high-quality content in social media [Agichtein et al. 2008]. A supervised method trained
on measures of text quality such as grammatical, syntactic and semantic complexity, punctuation
and typo errors, along with simple question-answer similarity and user expertise estimations.
Readability and informativeness are also included. Their best performance was achieved using
Stochastic Gradient Boosted Trees. We replicated their learning approach and feature set. This
baseline because it was the state of the art for best answer selection on Yahoo Answers data.

— Exploiting user feedback to learn to rank answers [Dalip et al. 2013]. Learning to rank approach
for ranking answers in Q&A fora using Random Forests, trained on several families of features.
We train it using 142 features overall, excluding those that in the original publication were specif-

5http://webscope.sandbox.yahoo.com/catalog.php?datatype=l
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ically designed for the stackoverflow use-case and all the features related to HTML formatting of
the question and answer, as we do not have text format information in our dataset.

— Learning to Rank Answers [Surdeanu et al. 2011]. Combines linguistic features, those based
on translation, classical frequency, density ones and web-correlation based ones with a learning
to rank approach, carried out with an averaged perceptron. It was applied on the Yahoo An-
swers Manner Questions dataset as a testbed. The authors did not use any user-based feature nor
expertise-based ones as this kind of information is missing from the dataset, but they also did
not adopt text quality features that we adopt and the levels of lexicalizations of their linguistic
features are only terms, lemmas and super-senses. We chose this baseline because it was the state
of the art on Yahoo Answers Manner Questions dataset for P@1.

— Improved answer ranking [Hieber and Riezler 2011]. Similar to the previous one, this work relies
mainly on textual features, but adopting Piggybacking features on web snippets. The ranking is
done adopting a SVM-based ranker. Their evaluation was carried out on Yahoo Answers Manner
Questions dataset as well. We choose this baseline because it was the state of the art on Yahoo
Answers Manner Questions dataset for MRR.

Features P@1 MRR DCG
BM25 0.4161±3·10−4 0.5549±3·10−4 0.6585±3·10−4

[Agichtein et al. 2008] 0.5256±3·10−4 0.6389±2·10−4 0.6975±3·10−4

[Dalip et al. 2013] 0.5971±3·10−4 0.7262±2·10−4 0.7931±3·10−4

tq 0.5454±3·10−4 0.7178±3·10−4 0.7815±3·10−4

ls 0.5297±3·10−4 0.7079±3·10−4 0.7768±3·10−4

ds 0.4944±3·10−4 0.6919±3·10−4 0.7722±3·10−4

u 0.5376±3·10−4 0.7165±3·10−4 0.7915±3·10−4

n 0.4582±3·10−4 0.6808±3·10−4 0.7646±4·10−4

tq+u 0.6361±3·10−4 0.7758±3·10−4 0.8416±3·10−4

tq+n 0.6021±3·10−4 0.7529±3·10−4 0.8237±3·10−4

tq+ds 0.5697±3·10−4 0.7310±3·10−4 0.8073±3·10−4

tq+ls 0.5670±3·10−4 0.7286±3·10−4 0.8056±3·10−4

tq+u+n 0.6575±3·10−4 0.7900±3·10−4 0.8533±4·10−4

tq+u+ds 0.6370±3·10−4 0.7770±3·10−4 0.8438±3·10−4

tq+u+ls 0.6357±3·10−4 0.7753±3·10−4 0.8417±3·10−4

tq+u+n+ds 0.6612±3·10−4 0.7918±3·10−4 0.8545±3·10−4

tq+u+n+ls 0.6577±3·10−4 0.7900±3·10−4 0.8528±3·10−4

all 0.6632±3·10−4 0.7954±3·10−4 0.8554±3·10−4

Table I: Predictive power of the learning to rank framework trained on
different feature subsets, on the Yahoo Answers 2011 dataset. Feature
families are Text Quality (tq), Linguistic Similarity (ls), Distributional
Semantics (ds), User (u), and Expertise Network (n). Best feature combi-
nations in each section of the table are in bold. 99% confidence intervals
are reported.

4.4. Performance analysis
We evaluate our learning to rank framework by performing a 10-fold cross validation. Questions in
each dataset are split into a training set Tr, a test set Ts, and a validation set Vs. Applying 10-fold
cross validation means that the dataset is divided into 10 disjoint partitions. The experiment was
performed in 10 steps, and at each step, 8 partitions were used as training set, one partition was used
as test set, and the last partition was used as validation set, which is adopted for tuning the Random
Forests hyperparameters (e.g. number of bags, number of trees, number of leaves). The steps were
repeated until each of the 10 disjoint partitions was used as the Ts, and results were averaged over
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the 10 runs. It is worth to note that the validation set is used to optimize the parameters of the
learning to rank algorithms, included the baseline in [Dalip et al. 2013].

For each question, all its answers are ranked by the learning to rank method. To allow a direct
comparison of the quality of the ranking with results in previous work, we use three standard IR
metrics that have been commonly used to evaluate this task, namely Mean Reciprocal Rank (MRR),
Precision at 1 (P@1) and Discounted Cumulative Gain (DCG). When considering the answers to a
single question, these are formally defined as follows:

RR =
1

rank(BA)
DCGk = ∑

k
i=1

2reli−1
log2(i+1) P@1 = rel1

where A is the set of answers, rank(BA) is the rank of the best answer for that question, and reli is
an indicator function of relevance that returns 1 if the answer in the ith position in the ranking is
the best answer. All the scores are then averaged over all the questions ( 1

|Q| ∑q∈Q score(q)). In case
the best answer is ranked first, MRR = DCG = P@1 = 1. As each question has only one answer
marked as correct (the best answer) the DCG = nDCG, because the ideal DCG is equal to 1. Given
the large size of our experimental dataset, all differences we obtain are statistically significant under
the non-parametric Randomization test [Smucker et al. 2007], with p < 0.01.

Feature ∆

tq: Preposition Count 0.0484
tq: Verbs not in Question 0.0468
tq: Nouns not in Question 0.0463
tq: Unique Words in Answer 0.0441
tq: Pronouns Count 0.0415
tq: Punctuation Count 0.0406
tq: Average Words per Sentence 0.0402
ds: Random Indexing on Yahoo Answers 0.0394
ls: Super-senses Overlap 0.0371
tq: Adjectives not in Question 0.0362
tq: Conjunctions Count 0.0357
tq: “To be” Count 0.0354
tq: Capitalized Words Count 0.0351
ls: Lemma Overlap 0.0346
ls: Stem Overlap 0.0342
tq: Auxiliary Verbs Count 0.0341
ls: Term Overlap 0.0325
ls: Super-senses BM25 0.0318
n: Indegree on CBEN 0.0307
u: Answerer’s Best Answer Ratio 0.0304

Table II: Ablation test. ∆ measures the loss of performance in MRR when
the feature is removed, when the full set of features is employed. Prefixes
in names indicate the family of the feature.

4.4.1. Performance on Yahoo Answers 2011. To gain insights about the predictive power of dif-
ferent feature families, we train the model on several subsets of features, with a greedy selection
procedure. We first separately test each family and pick the best performing one; at the next step,
we keep that family and combine it with all the others to select the best combination. The process
is repeated until all the feature families are included. The greedy strategy allows us to find a lo-
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Fig. 8. MRR and DCG computed for the first n positions of the ranking, for the different features families, plus the BM25
baseline and the full set of features. 99% confidence intervals are all in the range [2.6 ·10−4,3.6 ·10−4], thus are too small to
be represented in the figure.

cally optimal choice at each stage, with the hope of finding a global optimum in a reasonable time.
Results are shown in Table I.

The most predictive features are the ones belonging to the tq family. This group includes 44
features that capture many facets of the text structure that are indeed good proxies for the answer
quality. On the other hand, n features alone are the worst performing; this is expected as central-
ity metrics capture general expertise in a content-agnostic way, so they do not embed information
about the topic or structure of the questions and answers. A similar consideration can be done for
the user features even though their performance is sensibly higher than the network features. This
supports the findings in previous work [Chen and Nayak 2008], that found simple user features such
as the percentage of best answers very predictive of the level of user expertise. Finally, ls features
outperform the ds features, when used in isolation; this may be mainly due to the very different
dimensionality of the feature sets as Distributional Semantics include a set of just 6 features. Re-
garding the baselines, we note, as expected, that an approach that is not specifically tailored on the
task like BM25 performs poorly. The method from Agichtein et al. [2008] has also a performance
that is lower than the ones obtained by the single feature families partially because of the different
training procedure but mainly because it is trained with a set of features that is smaller than the ones
we consider inside each family. The best performing baseline is Dalip’s learning to rank frame-
work [Dalip et al. 2013], that achieve a higher precision at 1 even compared with our framework
when trained on single feature families; its superiority no longer holds when two or more feature
families are combined.

When combining features in pairs, interesting patterns emerge. Even though tq and ls are the
best performing individually, their combination improves the performance only slightly as the sig-
nal they bring is very overlapping. Indeed, their combination is the worst performing among all
the feature pairings. The same happens with ds features. n, and especially u features, are instead
more orthogonal to the tq information and are able to boost the performance considerably. Most
importantly, we find that n and u features carry predictive information that is non-overlapping, as
the combination of both with tq features results in further noticeable improvement.

Combinations of three feature groups or more make clear that, despite the high informativeness
on their own, the ls features give a fairly small contribution to the performance and replacing them
with ds features leads even to a small improvement. Given that the time of computation of the ls
features is roughly 12 times more than the ds ones (as empirically measured in our test), it appears
that ds features are stronger and more lightweight (they are very few) and therefore are more viable
alternative.
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The MRR score obtained with the combination of all the feature groups is a 10% improvement
over the baseline, while the P@1 score is a 11% improvement and DCG score is a 8% improvement.

Besides the greedy aggregation of feature families, to discover which single features give the
best signal for the prediction, we run an ablation test to measure the performance decrease ∆ in the
prediction when single features are removed from the set. The 20 ones with the highest values of ∆

are reported in Table II. We note that, although tq features tend to dominate, one feature from ds
and one from n make it into the top 20 (8th and 19th, respectively).

As final remark, we note that when plotting the MRR and DCG for rankings that include the top
n results only (Figure 8) we see that the values tend to increase considerably in the first positions of
the ranking, meaning that the best answer, if not ranked as first, is usually ranked among the top 2
or 3 answers.

4.4.2. Performance on Yahoo Answers Manner Questions. The last two baselines we consider
([Surdeanu et al. 2011] and [Hieber and Riezler 2011]) have been applied to the smaller Yahoo
Answers Manner Questions dataset described in §4.2. To get a fair comparison with them, we
replicate their same experimental setup on the same dataset, and repeat the greedy feature family
combination as described before. A Random Forests model is learned for each feature set, and
performances are reported in Table III. We performed a 10-fold cross validation exactly like the
previous dataset (see §4.4).

All the three groups improve over the baseline significantly both in P@1 and MRR, with tq being
the most effective. It is worth noticing that the distributed-representation based feature alone can
compete with the other two groups of features, which are composed of 42 features for tq and 74 for
ls.

Features P@1 MRR DCG
BM25 0.4118±2·10−4 0.5612±3·10−4 0.6126±3·10−4

[Surdeanu et al. 2011] 0.5091±3·10−4 0.6465±3·10−4 -
[Hieber and Riezler 2011] 0.4844±3·10−4 0.6676±3·10−4 -

ds 0.6269±2·10−4 0.7838±3·10−4 0.8348±3·10−4

ls 0.6329±3·10−4 0.7869±3·10−4 0.8389±3·10−4

tq 0.6392±3·10−4 0.8001±3·10−4 0.8501±3·10−4

ds+ls 0.6333±3·10−4 0.7787±3·10−4 0.8384±3·10−4

ds+tq 0.6685±3·10−4 0.8071±3·10−4 0.8573±3·10−4

ls+tq 0.6552±3·10−4 0.8005±3·10−4 0.8504±3·10−4

ds+ls+tq 0.6680±3·10−4 0.8070±3·10−4 0.8576±3·10−4

Table III: Predictive power of the learning to rank framework trained
on different feature subsets, on the Yahoo Answers Manner Questions
dataset. 99% confidence intervals are reported.

Taking into account the combinations of features we observe that the best performing one is the
composition of ds and tq. The combinations of ds and ls improves just of 0.0004 for P@1 over the
ls group alone, a non statistically significant improvement. This is expected as both groups try to
intercept the topical similarity between question and answer.
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The most interesting result that can be observed is that adding the ls group to the previous best
scoring group ds+tq only improves the performances of 0.0003 for DCG, again a non statistically
significant improvement. This finding suggests that in this setting the linguistic features, requiring a
really expensive preprocessing time to be computed, can be substituted with a single features based
on distributed representations of words without any loss of accuracy.

Finally, the best P@1 scores obtained with the ds+tq and ds+tq+ls feature groups are a 31% im-
provement over the state of the art (best of the three baselines), while the best MRR scores obtained
with the ds+tq+ls features group are an improvement of 19% over the state of the art.

4.4.3. Feature Analysis. We analyzed in more the detail the results of the ablation test, focusing
on the newly proposed features.

Considering the features based on Distributional Semantics (ds), reported in Table IV, we can
clearly see that the best performing feature, Random Indexing on Yahoo Answers, ranks 8th. This is
encouraging and suggests that the adoption of textual data coming from the dataset itself is helpful.
Continuous Skip-gram Model on the same datasets is the second best one, ranking 30th, supporting
the suggestion of the Random Indexing feature. The other two features using models learned on
the same dataset rank 88th (LSA over Random Indexing) and 90th (LSA), almost in the middle of
the ranking. The difference with respect to Random Indexing suggests that probably the number of
dimensions (400) is not an appropriate choice for the LSA, and an optimization of this parameter
could lead to improvements.

Feature Rank
ds: Random Indexing on Yahoo Answers 8
ds: Continuous Skip-gram Model on Yahoo Answers 30
ds: LSA on Wikipedia 38
ds: LSA after Random Indexing on Wikipedia 39
ds: Random Indexing on Wikipedia 40
ds: Continuous Skip-gram Model on Wikipedia 41
ds: LSA after Random Indexing on Yahoo Answers 88
ds: LSA on Yahoo Answers 90

Table IV: Distributional-Semantics-based features ablation ranking

Feature Rank
n: Indegree on CBEN 19
n: Hits on CBEN 34
n: Indegree on ABAN 100
n: Hits on ABAN 108
n: Indegree on ARN 162
n: Hits on ARN 163
n: PageRank on ARN 171
n: PageRank on CBEN 183
n: PageRank on ABAN 184

Table V: Network features ablation ranking

The features that adopt Wikipedia as a text source for learning the models rank really close: 38th

for LSA, 39th for LSA over Random Indexing, 40th for Continuous Skip-gram Model and 41th for
Random Indexing. This suggests that the differences in models, in this case, are less influent than
the dataset itself. As Wikipedia contains more than 4 million articles, the huge quantity of text in
this dataset leads to similar behaving models.
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Considering the Network based features (n), reported in Table V, the best performing network
structure is the Competition-Based Expertise Networks. Two features based on models calculated
on this network are the top ranked: Indegree on CBEN is 19th and Hits on CBEN is 34th. The
same two models calculated on the Asker Best-Answerer Network are ranked in the middle of the
ranking, 100th and 108th respectively, while those calculated on the Asker Replier Network are
ranked lower in the ranking, 162nd and 163rd . The fact that both models, the simple indegree and
the Hits authority, are found really close in the ranking suggests that they behave in a really similar
way. At the bottom of the ranking we found the PageRank model calculated on ARN (171st ), on
CBEN (183rd) and ABAN (184th). This suggests that PageRank is not a good fit in this setting and
leads to quite bad results.

4.4.4. Question Categories. Different types of questions may imply different notions of “high-
quality” answer. To investigate this aspect, we get back to the bigger Yahoo Answers 2011 dataset
and we break down the performance of the different feature families by the four question categories
we defined in §4.2. For brevity, we report the values for MRR only (P@1 and DCG follow the same
trends) and limit the analysis to feature families taken in isolation.

In agreement with previous work [Aslay et al. 2013], the best answer is more difficult to predict
for discussion and poll-type questions, as they are naturally less suited to expert ranking. Best an-
swers for factual and subjective questions are better surfaced by the tq features, while the u features
are dominating discussions and polls.

Focusing on the novel features we introduce, we note their complementary behavior, being ds
better than n in polls and discussion (and even better than ls for polls) but worse in factual and
subjective questions. Also, it is worth noting that ds has the smaller variance in performance across
categories. Detailed results in Table VI.

4.4.5. Different Algorithms. Our decision to use a pointwise approach like RF as ranking algo-
rithm is based on the intuition that pairwise and listwise approaches are not likely to be more effec-
tive because of the presence of only one correct answer for each question in the dataset. This means
that we have a number of equally wrong answers that we cannot distinguish based on their rele-
vance to the answer, so the full list of answers is not likely to bring more information than the single
answers. RF is supposed to be quite resilient to overfitting when applied on large-scale training sets.

Factual Subjective Discussion Poll
tq 0.7490±3·10−4 0.7397±3·10−4 0.6836±3·10−4 0.6924±3·10−4

ls 0.7399±3·10−4 0.7273±3·10−4 0.6636±3·10−4 0.6505±3·10−4

ds 0.7040±3·10−4 0.6899±3·10−4 0.6532±3·10−4 0.6658±3·10−4

u 0.7378±3·10−4 0.7276±3·10−4 0.6880±3·10−4 0.7034±3·10−4

n 0.7164±2·10−4 0.7109±2·10−4 0.6289±4·10−4 0.6372±2·10−4

all 0.8216±3·10−4 0.8059±3·10−4 0.7666±3·10−4 0.7800±3·10−4

Table VI: MRR scores obtained with single feature families on the Yahoo
Answers 2011 dataset. 99% confidence intervals are reported.

LR RankSVM ListNet RF
Manner 0.6964±2·10−4 0.7880±3·10−4 0.7705±3·10−4 0.7927±3·10−4

Factual 0.7418±3·10−4 0.7967±3·10−4 0.7814±3·10−4 0.8216±3·10−4

Subjective 0.7193±3·10−4 0.7834±3·10−4 0.7600±3·10−4 0.8059±4·10−4

Discussion 0.6891±3·10−4 0.7448±3·10−4 0.7245±4·10−4 0.7667±3·10−4

Poll 0.7037±3·10−4 0.7479±3·10−4 0.7498±3·10−4 0.7800±3·10−4

All 0.7177±3·10−4 0.7684±2·10−4 0.7650±3·10−4 0.7954±3·10−4
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Table VII: MRR scores obtained with different Learning to Rank algo-
rithms on the Yahoo Answers 2011 dataset. 99% confidence intervals are
reported.

To assess that RF is indeed the best approach, we run the evaluations on the same datasets with
the same features using different algorithms.

We chose Logistic Regression (LR) as an alternative pointwise approach because it was success-
fully adopted in large-scale real-world QA scenarios [Ferrucci 2011]. For pairwise approaches we
chose RankSVM [Joachims 2002] as the algorithm to test against, as SVMs were shown to be ef-
fective on the same Yahoo Answers Manner Questions dataset [Surdeanu et al. 2011]. Finally, for a
listwise approach, we chose to test against ListNet [Cao et al. 2007]. For all the algorithms we tuned
the hyperparameters from the adopted libraries (RankLib6 and SVMLight7), e.g. regularization and
kernel for RankSVM, learning rate and number of epochs for ListNet.

The results in Table VII show only the trends for MRR using all the features, but the same trends
are also present by changing the adopted feature set combination and metric. Logistic Regression
is the worst performing algorithm on all the sets of questions, while among RankSVM and ListNet
the difference is really small with RankSVM obtaining slightly higher results on all question sets
but Poll. None of the alternative algorithms can reach the performance levels reached by RF in any
of the question sets, and this gives some empirical evidence that our choice was reasonable.

5. CONCLUSIONS
We contribute to bring order to the vast literature on the task of best answer selection by gathering
the largest set of features considered for this task so far, grouped in five families, combining them
with a learning to rank approach, and testing them on large datasets from Yahoo Answers. We
propose a new suite of Distributional-Semantics-based features, in combination with the textual
signal and the information from several Expertise Networks. Besides being able to outperform the
prediction ability of state-of-the-art methods up to 26% in P@1, our experiments allow us also to
draw important conclusions about the impact of different features employed that have never been
spell out in previous literature due to a lack of extensive and systematic feature comparison. We
summarize our findings as follows.

— Textual features are by far the ones with higher predictive potential, compared to user-centric
features or to the Expertise Network centrality scores. This is mainly due to the fact that the
content of the question and answers (their topic and structure) are a more important source of
information to determine the question-answering match rather than the expertise of the answerers.
Those features are to prefer when dealing with factual-type questions.

— Among the textual features, Text Quality and Distributional Semantics are in general to prefer
to Linguistic Similarity. We indeed found that Linguistic Similarity’s signal is mostly captured
by other features already. This is an important finding as Linguistic Similarity features have
been used in a number of previous approaches but are roughly 12 times more computationally
expensive than Distributional Semantics ones.

— The new Distributional-Semantics-based approach we propose achieves surprisingly good results
considering the very small cardinality of its feature set.

— User and network features determine a considerable improvement over the textual-based features
and their contribution is not completely overlapping, meaning that considering network inter-
action rather than the individual user activity adds real value to the prediction. When user or
network information is available, it is advisable to use them in combination with text quality
features instead of using different textual features combined.

6http://sourceforge.net/p/lemur/wiki/RankLib/
7http://svmlight.joachims.org
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We believe our work will help to take the stock of the research on the task of best answer prediction
and set the basis for new developments in the field.
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Appendix

Group tq Subgroup visual property
Count of auxiliary verbs
Count of pronouns
Count of conjunctions
Count of prepositions
Count of occurrences of the verb “to be”
Count of punctuation marks
Minimum length of quoted text
Average length of quoted text
Maximum length of quoted text
Number of quotes
Number of sentences
Number of capitalized words
Number of characters
Number of whitespace violations (lack or redundancy)
Number of URLs
Number of words
Number of capitalization violations (i.e. no capital letter after sentence mark)
Number of question marks
Number of punctuation violations (lack or redundancy)
Number of whitespaces
Punctuation characters divided by all characters
Whitespace characters divided by all characters
Capital letters characters divided by all characters

Table VIII: Visual Property features

Group tq Subgroup readability
Average words per sentence
Average words length in syllables
Average words length in characters
Number of complex words divided by all words
Number of unique words
Average unique words per sentence
Flesch-Kinkaid Grade Level
Automated Readability Index
Coleman-Liau Index
Flesch Reading Ease
Gunning-Fog Index
LIX score
SMOG grade
Number of short sentences
Number of long sentences
Automated Readability Index of the question

Table IX: Readability features
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Group tq Subgroup informativeness
Number of nouns present in the answer but not in the question
Number of verbs present in the answer but not in the question
Number of adjectives present in the answer but not in the question

Table X: Informativeness features

Group ls Subgroup overlap
Overlap of lemmas
Overlap of concatenations of lemmas and PoS tags
Overlap of named entities
Overlap of stems
Overlap of super-senses
Overlap of terms
Overlap of labeled dependencies with lemma lexicalization
Overlap of labeled dependencies with super-sense lexicalization
Overlap of unlabeled dependencies with lemma lexicalization
Overlap of unlabeled dependencies with super-sense lexicalization
Overlap of labeled semantic roles with lemma lexicalization
Overlap of labeled semantic roles with super-sense lexicalization
Overlap of unlabeled semantic roles with lemma lexicalization
Overlap of unlabeled semantic roles with super-sense lexicalization
Jaccard Index of lemmas
Jaccard Index of concatenations of lemmas and PoS tags
Jaccard Index of named entities
Jaccard Index of stems
Jaccard Index of super-senses
Jaccard Index of terms
Overlap of lemma bigrams
Overlap of bigrams of concatenations of lemmas and PoS tags
Overlap of stem bigrams
Overlap of super-sense bigams
Overlap of term bigrams
Overlap of lemma trigrams
Overlap of trigrams of concatenations of lemmas and PoS tags
Overlap of stem trigrams
Overlap of super-sense trigams
Overlap of term trigrams
Overlap of lemma tetragram
Overlap of tetragrams of concatenations of lemmas and PoS tags
Overlap of stem tetragrams
Overlap of super-sense tetragams
Overlap of term tetragrams

Table XI: Overlap features

Group ls Subgroup frequency
BM25 with lemmas
BM25 with concatenations of lemmas and PoS tags
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BM25 with stems
BM25 with super-senses
BM25 with terms
Language Modeling with lemmas
Language Modeling with concatenations of lemmas and PoS tags
Language Modeling with stems
Language Modeling with super-senses
Language Modeling with terms
TF-IDF with lemmas
TF-IDF with concatenations of lemmas and PoS tags
TF-IDF with stems
TF-IDF with super-senses
TF-IDF with terms

Table XII: Frequency features

Group ls Subgroup density
Density of lemmas
Density of concatenations of lemmas and PoS tags
Density of named entities
Density of stems
Density of super-senses
Density of terms

Table XIII: Density features

Group ls Subgroup machine translation
Machine Translation of lemmas
Machine Translation of concatenations of lemmas and PoS tags
Machine Translation of named entities
Machine Translation of stems
Machine Translation of super-senses
Machine Translation of terms
Machine Translation of labeled dependencies with lemma lexicalization
Machine Translation of labeled dependencies with super-sense lexicalization
Machine Translation of unlabeled dependencies with lemma lexicalization
Machine Translation of unlabeled dependencies with super-sense lexicalization
Machine Translation of labeled semantic roles with lemma lexicalization
Machine Translation of labeled semantic roles with super-sense lexicalization
Machine Translation of unlabeled semantic roles with lemma lexicalization
Machine Translation of unlabeled semantic roles with super-sense lexicalization

Table XIV: Machine Translation features

Group ls Subgroup other
Number of consecutive overlapping words
Length of the answer divided by the length of question (in characters)
1 divided by the length of the answer
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1 divided by the length of the question
Table XV: Other features

Group ls Subgroup distributional semantics
Semantic similarity using the LSA on Wikipedia corpus
Semantic similarity using the Random Indexing on Wikipedia corpus
Semantic similarity using the LSA after Random Indexing on Wikipedia corpus
Semantic similarity using the Continuous Skip-gram Model on Wikipedia corpus
Semantic similarity using the LSA on Yahoo Answers corpus
Semantic similarity using the Random Indexing on Yahoo Answers corpus
Semantic similarity using the LSA after Random Indexing on Yahoo Answers corpus
Semantic similarity using the Continuous Skip-gram Model on Yahoo Answers corpus

Table XVI: Distributional-Semantics-based features

Group u Subgroup profile
Presence of a resume in the user profile (1 if present, 0 otherwise)
Length of the resume (in characters)
Presence of a title in the user profile (1 if present, 0 otherwise)
Presence of a picture in the user profile (1 if present, 0 otherwise)
Time since the account creation

Table XVII: User Profile features

Group u Subgroup question answer
Number of (not deleted) questions asked by the user
Number of deleted questions asked by the user
Number of answered questions asked by the user
Number of flagged questions asked by the user
Number of questions with a star asked by the user
Number of (not deleted) questions asked by the user divided by the time since the account cre-
ation
Number of deleted questions asked by the user divided by the time since the account creation
Number of answered questions asked by the user divided by the time since the account creation
Number of flagged questions asked by the user divided by the time since the account creation
Number of questions with a star asked by the user divided by the time since the account creation
Number of (not deleted) questions divided by all the questions asked by the user
Number of deleted questions divided by all the questions of the user
Number of answered questions divided by all the questions asked by the user
Number of flagged questions divided by all the questions asked by the user
Number of questions with a star divided by all the questions asked by the user
Minimum Automatic Readability Index of questions asked by the user
Maximum Automatic Readability Index of questions asked by the user
Average Automatic Readability Index of questions asked by the user
Number of questions divided by number of answers given by the user
Number of (non deleted) answers given by the user
Number of deleted answers given by the user
Number of best answers given by the user
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Number of flagged questions asked by the user
Number of (not deleted) answers given by the user divided by the time since the account creation
Number of deleted answers given by the user divided by the time since the account creation
Number of best answers given by the user divided by the time since the account creation
Number of flagged answers given by the user divided by the time since the account creation
Number of (not deleted) answers divided by all the answers given by the user
Number of deleted answers divided by all the answers given by the user
Number of best answers divided by all the answers given by the user
Number of flagged answers divided by all the answers given by the user
Number of positive votes that the answers given by the user have received
Number of negative votes that the answers given by the user have received
Difference of positive and negative votes that the answers given by the user have received
Number of positive votes divided by number of negative votes that the answers given by the user
have received
Minimum Automatic Readability Index of answers given by the user
Maximum Automatic Readability Index of answers given by the user
Average Automatic Readability Index of answers given by the user

Table XVIII: Question Answer features

Group u Subgroup category
Number of (not deleted) questions asked by the user in the category of the question
Number of deleted questions asked by the user in the category of the question
Number of answered questions asked by the user in the category of the question
Number of flagged questions asked by the user in the category of the question
Number of questions with a star asked by the user in the category of the question
Number of (not deleted) questions asked by the user divided by the time since the account cre-
ation in the category of the question
Number of deleted questions asked by the user divided by the time since the account creation in
the category of the question
Number of answered questions asked by the user divided by the time since the account creation
in the category of the question
Number of flagged questions asked by the user divided by the time since the account creation in
the category of the question
Number of questions with a star asked by the user divided by the time since the account creation
in the category of the question
Number of (not deleted) questions divided by all the questions asked by the user in the category
of the question
Number of deleted questions divided by all the questions of the user in the category of the ques-
tion
Number of answered questions divided by all the questions asked by the user in the category of
the question
Number of flagged questions divided by all the questions asked by the user in the category of the
question
Number of questions with a star divided by all the questions asked by the user in the category of
the question
Minimum Automatic Readability Index of questions asked by the user in the category of the
question
Maximum Automatic Readability Index of questions asked by the user in the category of the
question
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Average Automatic Readability Index of questions asked by the user in the category of the ques-
tion
Number of questions divided by number of answers given by the user in the category of the
question
Number of (non deleted) answers given by the user in the category of the question
Number of deleted answers given by the user in the category of the question
Number of best answers given by the user in the category of the question
Number of flagged questions asked by the user in the category of the question
Number of (not deleted) answers given by the user divided by the time since the account creation
in the category of the question
Number of deleted answers given by the user divided by the time since the account creation in
the category of the question
Number of best answers given by the user divided by the time since the account creation in the
category of the question
Number of flagged answers given by the user divided by the time since the account creation in
the category of the question
Number of (not deleted) answers divided by all the answers given by the user in the category of
the question
Number of deleted answers divided by all the answers given by the user in the category of the
question
Number of best answers divided by all the answers given by the user in the category of the
question
Number of flagged answers divided by all the answers given by the user in the category of the
question
Number of positive votes that the answers given by the user have received in the category of the
question
Number of negative votes that the answers given by the user have received in the category of the
question
Difference of positive and negative votes that the answers given by the user have received in the
category of the question
Positive/negative vote ratio for the answers given by the user have received in the category of the
question
Minimum Automatic Readability Index of answers given by the user in the category of the ques-
tion
Maximum Automatic Readability Index of answers given by the user in the category of the
question
Average Automatic Readability Index of answers given by the user in the category of the question
Entropy of the vector constructed by counting the number of questions in each category
Entropy of the vector constructed by counting the number of answers in each category

Table XIX: Category features

Group u Subgroup behavioral
Internal Yahoo Answer authority score of the user
Number of flags given by the user
Number of positive votes given by the user
Number of negative votes given by the user
Difference between the number of positive votes and the number of negative votes given by the
user
Number of positive votes divided by the number of negative votes given by the user
Time between the question is posted and the answer is given by the user
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Number of answers given to this question
Table XX: Behavioral features

Group n Subgroup arn - aban - cben
Indegree of the user in the Asker Replier Network
PageRank of the user in the Asker Replier Network
Hits Authority of the user in the Asker Replier Network
Indegree of the user in the Best-Answerer Network
PageRank of the user in the Best-Answerer Network
Hits Authority of the user in the Best-Answerer Network
Indegree of the user in the Competition-Based Expertise Network
PageRank of the user in the Competition-Based Expertise Network
Hits Authority of the user in the Competition-Based Expertise Network

Table XXI: Network features
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Wolfgang Nejdl (Eds.). ACM, 51–60.

Matthew W. Bilotti, Jonathan L. Elsas, Jaime G. Carbonell, and Eric Nyberg. 2010. Rank learning for factoid question
answering with linguistic and semantic constraints, See Huang et al. [2010], 459–468.

Mohamed Bouguessa, Benoı̂t Dumoulin, and Shengrui Wang. 2008. Identifying authoritative actors in question-answering
forums: the case of Yahoo! answers. In Proceedings of the 14th ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, Las Vegas, Nevada, USA, August 24-27, 2008, Ying Li, Bing Liu, and Sunita Sarawagi
(Eds.). ACM, 866–874.

Alessandro Bozzon, Marco Brambilla, Stefano Ceri, Matteo Silvestri, and Giuliano Vesci. 2013. Choosing the right crowd:
expert finding in social networks. In Joint 2013 EDBT/ICDT Conferences, EDBT ’13 Proceedings, Genoa, Italy, March
18-22, 2013, Giovanna Guerrini and Norman W. Paton (Eds.). ACM, 637–648.

Leo Breiman. 2001. Random Forests. Machine Learning 45, 1 (2001), 5–32.
C. Buckley, A. Singhal, and M. Mitra. 1995. New Retrieval Approaches Using SMART : TREC 4. In Proceedings of the

Fourth Text REtrieval Conference (TREC-4). 25–48.
Curt Burgess, Kay Livesay, and Kevin Lund. 1998. Explorations in context space: Words, sentences, discourse. Discourse

Processes 25, 2-3 (1998), 211–257.
Christopher S. Campbell, Paul P. Maglio, Alex Cozzi, and Byron Dom. 2003. Expertise identification using email communi-

cations. In Proceedings of the 2003 ACM CIKM International Conference on Information and Knowledge Management,
New Orleans, Louisiana, USA, November 2-8, 2003. ACM, 528–531.

Zhe Cao, Tao Qin, Tie-Yan Liu, Ming-Feng Tsai, and Hang Li. 2007. Learning to rank: from pairwise approach to listwise
approach. In Machine Learning, Proceedings of the Twenty-Fourth International Conference (ICML 2007), Corvallis,
Oregon, USA, June 20-24, 2007 (ACM International Conference Proceeding Series), Zoubin Ghahramani (Ed.), Vol.
227. ACM, 129–136.

Shuo Chang and Aditya Pal. 2013. Routing questions for collaborative answering in community question answering. In
Advances in Social Networks Analysis and Mining 2013, ASONAM ’13, Niagara, ON, Canada - August 25 - 29, 2013,
Jon G. Rokne and Christos Faloutsos (Eds.). ACM, 494–501.

Bee-Chung Chen, Anirban Dasgupta, Xuanhui Wang, and Jie Yang. 2012. Vote calibration in community question-answering
systems, See Hersh et al. [2012], 781–790.

Haiqiang Chen, Huawei Shen, Jin Xiong, Songbo Tan, and Xueqi Cheng. 2006. Social Network Structure Behind the Mailing
Lists: ICT-IIIS at TREC 2006 Expert Finding Track. In Proceedings of the Fifteenth Text REtrieval Conference, TREC
2006, Gaithersburg, Maryland, November 14-17, 2006, Ellen M. Voorhees and Lori P. Buckland (Eds.), Vol. Special
Publication 500-272. National Institute of Standards and Technology (NIST).

Lin Chen and Richi Nayak. 2008. Expertise Analysis in a Question Answer Portal for Author Ranking. In 2008 IEEE / WIC
/ ACM International Conference on Web Intelligence, WI 2008, 9-12 December 2008, Sydney, NSW, Australia, Main
Conference Proceedings. IEEE Computer Society, 134–140.

Trevor Cohen, Roger Schvaneveldt, and Dominic Widdows. 2010. Reflective Random Indexing and indirect inference:
A scalable method for discovery of implicit connections. Journal of Biomedical Informatics 43, 2 (2010), 240–256.
DOI:http://dx.doi.org/10.1016/j.jbi.2009.09.003

William W. Cohen and Samuel Gosling (Eds.). 2010. Proceedings of the Fourth International Conference on Weblogs and
Social Media, ICWSM 2010, Washington, DC, USA, May 23-26, 2010. The AAAI Press.
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Daniel Hasan Dalip, Marcos André Gonçalves, Marco Cristo, and Pável Calado. 2013. Exploiting user feedback to learn to
rank answers in q&a forums: a case study with stack overflow, See Jones et al. [2013], 543–552.

S. Dasgupta and A. Gupta. 1999. An elementary proof of the Johnson-Lindenstrauss lemma. Technical Report. Technical
Report TR-99-006, International Computer Science Institute, Berkeley, California, USA.

David Dearman and Khai N. Truong. 2010. Why Users of Yahoo!: Answers Do Not Answer Questions. In Proceedings of
the SIGCHI Conference on Human Factors in Computing Systems (CHI ’10). ACM, New York, NY, USA, 329–332.
DOI:http://dx.doi.org/10.1145/1753326.1753376

Scott C. Deerwester, Susan T. Dumais, Thomas K. Landauer, George W. Furnas, and Richard A. Harshman. 1990. Indexing
by Latent Semantic Analysis. JASIS 41, 6 (1990), 391–407.

Byron Dom, Iris Eiron, Alex Cozzi, and Yi Zhang. 2003. Graph-based ranking algorithms for e-mail expertise analysis. In
Proceedings of the 8th ACM SIGMOD workshop on Research issues in data mining and knowledge discovery, DMKD
2003, San Diego, California, USA, June 13, 2003, Mohammed Javeed Zaki and Charu C. Aggarwal (Eds.). ACM,
42–48.

ACM Transactions on Information Systems, Vol. V, No. N, Article A, Publication date: YYYY.

http://dx.doi.org/10.1016/j.jbi.2009.09.003
http://dx.doi.org/10.1145/1753326.1753376


A:37

Gideon Dror, Yehuda Koren, Yoelle Maarek, and Idan Szpektor. 2011. I want to answer; who has a question?: Yahoo! answers
recommender system. In Proceedings of the 17th ACM SIGKDD International Conference on Knowledge Discovery and
Data Mining, San Diego, CA, USA, August 21-24, 2011, Chid Apté, Joydeep Ghosh, and Padhraic Smyth (Eds.). ACM,
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