US 20180107643A1

a9y United States

a2y Patent Application Publication o) Pub. No.: US 2018/0107643 A1

Gliozzo et al.

43) Pub. Date: Apr. 19, 2018

(54)

(71)

(72)

@
(22)

(1)

(52)

METHODS AND SYSTEM FOR FAST,
ADAPTIVE CORRECTION OF MISSPELLS

Applicant: International Business Machines
Corporation, Armonk, NY (US)

Inventors: Alfio M. Gliozzo, Brooklyn, NY (US);
Piero Molino, New York, NY (US)

Appl. No.: 15/296,818
Filed: Oct. 18, 2016

Publication Classification

Int. CL.
GO6F 17/27 (2006.01)
GO6F 17/30 (2006.01)
GO6F 17/22 (2006.01)
GO6F 17/24 (2006.01)
U.S. CL

CPC ... GO6F 17/273 (2013.01); GO6F 17/30619
(2013.01); GOG6F 17/30864 (2013.01); GO6F
17/24 (2013.01); GO6F 17/3064 (2013.01);

1130

GOGF 17/30371 (2013.01); GOGF 17/2235
(2013.01); GOGF 17/30675 (2013.01)

(57) ABSTRACT

Embodiments are directed to a spellcheck module for an
enterprise search engine. The spellcheck module includes a
candidate suggestion generation module that generates a
number of candidate words that may be the correction of the
misspelled word. The candidate suggestion generation mod-
ule implements an algorithm for indexing, searching, and
storing terms from an index with a constrained edit distance,
using words in a collection of documents. The spellcheck
module further includes a candidate suggestion ranking
module. In one embodiment, a non-contextual approach
using a linear combination of distance and probability scores
is utilized; while in another embodiment, a context sensitive
approach accounting for real-word misspells and adopting
deep learning models is utilized. In use, a query is provided
to the spellcheck module to generate results in the form of
a ranked list of generated candidate entries that may be an
entry a user accidentally misspelled.

1A2n

Define & maximum
et d
thrashold

freguency

istance and a

Sort the dataset to
1y s

add to the index

WOTHS T s

Rank the
candidate

ontries

1150 11440
dentify one 17 Recaive a
oY Mo taxt for
candidate | speliing

entries analysis

US 2018/0107643 Al

Apr. 19,2018 Sheet 1 of 17

Patent Application Publication

ANABE

SHAB
Bunnduwion

1D

IIABC

AHARC
s8BI0IS

00¢
FNPoW Yoaysyads

Oty
3L
Yosess ssudiaiuy

Sunnduion

US 2018/0107643 Al

Apr. 19,2018 Sheet 2 of 17

Patent Application Publication

LOISREENG

. (.

HAPOW
WOIRIBUBD
UoIsasEng
SIBpIOURTY

DEE
WOI0eH0T
Ka Hapul

807 anpow yoeyoyads

Adanm

Patent Application Publication Apr. 19,2018 Sheet 3 of 17 US 2018/0107643 A1

Patent Application Publication Apr. 19,2018 Sheet 4 of 17 US 2018/0107643 A1

1G5, 448

F

Patent Application Publication Apr. 19,2018 Sheet S of 17 US 2018/0107643 A1

Patent Application Publication Apr. 19,2018 Sheet 6 of 17 US 2018/0107643 A1

Fita, 4C

Patent Application Publication Apr. 19,2018 Sheet 7 of 17 US 2018/0107643 A1

L

Wh

:

FiG.

Patent Application Publication Apr. 19,2018 Sheet 8 of 17 US 2018/0107643 A1

(. 58

F

Patent Application Publication Apr. 19,2018 Sheet 9 of 17 US 2018/0107643 A1

Patent Application Publication Apr. 19,2018 Sheet 10 of 17 US 2018/0107643 Al

B

5

FiG.

Patent Application Publication Apr. 19,2018 Sheet 11 of 17 US 2018/0107643 Al

FiG. &

600

Patent Application Publication Apr. 19,2018 Sheet 12 of 17 US 2018/0107643 A1l

744

FiG. 7

i)
e
o

700

P~

US 2018/0107643 Al

Apr. 19,2018 Sheet 13 of 17

Patent Application Publication

T BDLE
70 eI
£ BHIGUIE

BINPON
Supjuey
fete

UOISa a8t
SLEDHIUET

ROLILE

Patent Application Publication Apr. 19,2018 Sheet 14 of 17 US 2018/0107643 A1l

FiG. 8

200

Patent Application Publication Apr. 19,2018 Sheet 15 of 17 US 2018/0107643 Al

1000 1010

Recelve 2
text for
spelling
analysis

Create o
table of
eniries

Cormpare an entry in the
texi to the table of entriss
to form a candidate set of

entries

1040

Rank the '

candidate set
of entries

Order at least
some of the
candidates based
on the ranking

FiG. 10

US 2018/0107643 Al

Apr. 19,2018 Sheet 16 of 17

Patent Application Publication

1T 94

Ol

Kapil 8yl o3
SPIOM BAIRUIBYE
DR SDI0M

peRULD] ol PRY

S2LIUD
Sxtgeiiaitize
BIOUL SO
BUC AHIUBHY

sEidiide
SIEHDLED
ay3 uey

O%tt

guti

Xoput ayl 01 ppe

O3 SpAoA AUBD
O] JESEIRD Y oY

TN

Azuanbaiy

GIOYSRALR

B pUR S3UBISID HRS
LINLLIXBUL B BULS0

011l

US 2018/0107643 Al

Apr. 19,2018 Sheet 17 of 17

Patent Application Publication

Lo
O1IZT e0¢L 8071 FIEY £LTT Q07T T 11E%
‘ BENOIA SSDASC $13 0 Jaydepy BALICT .
NOY | wepon /RriecuAsy B 2d/10d ABUIG/ESN pomian | EMA0 CaH
91t ong
TOETT HOVEs

POCT GOCT
o i _, Jaydepy Asoaw OSSR
atel OS L0LY oIpnYy UieiA sopgdess

0zl BUISSEN04 -

US 2018/0107643 Al

METHODS AND SYSTEM FOR FAST,
ADAPTIVE CORRECTION OF MISSPELLS

BACKGROUND

[0001] Query spellchecking is a commonly-available fea-
ture in modern Internet search engines. However, enterprise
search engines often lack this functionality as implementing
spellcheck without web query logs may require a language
dependent and a vocabulary dependent solution that is
difficult to implement. Off-the-shelf, open source spell-
checkers are insufficient as such software, while able to
identify errors in grammatically-correct texts such as those
used in a word processors, fails in adapting to a specific
domain such as a particular enterprise.

[0002] Thus, there is a need for an enterprise search engine
query spell correction that is adaptable and customizable to
customer-specific data.

SUMMARY

[0003] Embodiments are directed to a spellcheck module
for an enterprise search engine.

[0004] According to embodiments, a computer-imple-
mented method, system, and computer program product are
provided for adaptive correction of misspelling. The system
includes a processor coupled to one or more user devices,
the processor configured to receive user-generated search
queries from the one or more user devices. The computer
program product comprises a computer readable storage
medium having program instructions embodied therewith,
the program instructions executable by a processor. The
processor is configured to implement the computer-imple-
mented method of defining a maximum edit distance and a
threshold frequency for words of a dataset to be added to an
index; sorting the dataset to identify the words of the dataset
to add to the index based on the threshold frequency; adding
to the index the identified words and alternative words
having character deletions in accordance with the maximum
edit distance to create entries; receiving a text for spelling
analysis; identifying one or more candidate entries from the
entries of the index by obtaining from the index the entries
associated with the text; and ranking the one or more

candidate entries utilizing a non-contextual scoring
approach.
[0005] Additional features and advantages are apparent

from the following detailed description that proceeds with
reference to the accompanying drawings.

BRIEF DESCRIPTION OF THE DRAWINGS

[0006] The foregoing and other aspects of the present
invention are best understood from the following detailed
description when read in connection with the accompanying
drawings. For the purpose of illustrating the invention, there
is shown in the drawings embodiments that are presently
preferred, it being understood, however, that the invention is
not limited to the specific instrumentalities disclosed.
Included in the drawings are the following Figures:

[0007] FIG. 1 is a diagram depicting a system in which an
enterprise search engine and a spellcheck module may be
implemented, according to embodiments herein;

[0008] FIG. 2 is a block diagram illustrating components
of a spellcheck module, according to embodiments herein;
[0009] FIG. 3 is an example representation of the concept
of edit distance, according to embodiments herein;

Apr. 19,2018

[0010] FIGS. 4A-4C are example indexing operations,
according to embodiments;

[0011] FIGS. 5A-5D are example searching operations,
according to embodiments;

[0012] FIG. 6 illustrates non-contextual scoring aspects,
according to an embodiment;

[0013] FIG. 7 illustrates context sensitive scoring aspects,
according to an embodiment;

[0014] FIG. 8 is a runtime example of the implementation
of a spellcheck module, according to embodiments herein;
[0015] FIG. 9 is a screenshot output example of the
implementation of a spellcheck module, according to
embodiments herein;

[0016] FIG. 10 is a flowchart illustrating a method for
adaptive correction of misspelling, according to embodi-
ments herein;

[0017] FIG. 11 is a flowchart illustrating a method for
adaptive correction of misspelling, according to an addi-
tional embodiment; and

[0018] FIG. 12 is a block diagram of an example data
processing system in which aspects of the illustrative
embodiments may be implemented.

DETAILED DESCRIPTION

[0019] The present description and claims may make use
of the terms “a,” “at least one of,” and “one or more of,” with
regard to particular features and elements of the illustrative
embodiments. It should be appreciated that these terms and
phrases are intended to state that there is at least one of the
particular feature or element present in the particular illus-
trative embodiment, but that more than one can also be
present. That is, these terms/phrases are not intended to limit
the description or claims to a single feature/element being
present or require that a plurality of such features/elements
be present. To the contrary, these terms/phrases only require
at least a single feature/element with the possibility of a
plurality of such features/elements being within the scope of
the description and claims.

[0020] In addition, it should be appreciated that the fol-
lowing description uses a plurality of various examples for
various elements of the illustrative embodiments to further
illustrate example implementations of the illustrative
embodiments and to aid in the understanding of the mecha-
nisms of the illustrative embodiments. These examples are
intended to be non-limiting and are not exhaustive of the
various possibilities for implementing the mechanisms of
the illustrative embodiments. It will be apparent to those of
ordinary skill in the art in view of the present description that
there are many other alternative implementations for these
various elements that may be utilized in addition to, or in
replacement of, the example provided herein without depart-
ing from the spirit and scope of the present invention.
[0021] According to embodiments disclosed herein, a
spellcheck module for an enterprise search engine is pro-
vided. Several constraints related to an enterprise search
engine are addressed, according to embodiments provided
herein, including: unavailability of query logs, language
independence, operability for non-syntactical sentences (i.e.,
the solution cannot rely on classical linguistic features),
availability of only raw text data (i.e., document collection
indexed by the search engine), and speed. According to
embodiments, the spellcheck module employs a self-adapt-
able misspell detection strategy on customer data. The
spellcheck module is an advantageous feature for an enter-

US 2018/0107643 Al

prise search engine as, according to some research, 26% of
search engine queries contain misspells, 25-40% of which
are real words (e.g., “them” misspelled as “then”) and the
remaining of which are out of vocabulary words. Misspell
detection improves search results and strongly improves
user experience.

[0022] According to an embodiment disclosed herein, a
candidate generation algorithm is provided for generating a
candidate set of entries for an entry in a text that is part of
a user query. According to additional embodiments, candi-
date suggestion ranking functions are provided for ranking
the generated candidate set of entries. In an embodiment, a
candidate suggestion ranking function utilizes a non-con-
textual approach, while in another embodiment, a candidate
suggestion ranking function utilizes a context sensitive
approach.

[0023] FIG. 1 is a diagram depicting a system 100 in
which an enterprise search engine 110 and a spellcheck
module 200 may be implemented, according to embodi-
ments herein. The system 100 includes the enterprise search
engine 110 coupled directly or via a network 120 to various
computing devices 102a, 1025, 102¢, and 102d. Each device
102a, 1025, 102¢, and 1024 may be a user computing device
from which one or more queries are generated and trans-
mitted to the enterprise search engine 110. Additional or
fewer devices 102 may be included in the system 100. A
storage device 130 coupled to the enterprise search engine
110 is also provided in the system 100. The storage device
130 receives and stores information related to, for example,
the enterprise search engine 110 and the user devices 102a,
1025, 102¢, and 1024d.

[0024] According to an embodiment, the enterprise search
engine 110 comprises one or more processors and/or mod-
ules for implementing search functionality to provide results
to user-generated queries. One such module is the spellcheck
module 200, further described in accordance with embodi-
ments herein.

[0025] FIG. 2 is a block diagram illustrating components
of a spellcheck module 200 of the enterprise search engine
110, according to embodiments. As shown in FIG. 2, the
spellcheck module 200 is comprised of an index/text col-
lection 230, which may, in an embodiment, be part of the
storage device 130. In an alternative embodiment, the index/
text collection 230 is separate from the storage device 130.
The spellcheck module 200 further includes a candidate
suggestion generation module 210 and a candidate sugges-
tion ranking module 220. In an embodiment, a query is
provided to the spellcheck module 200, which utilizes the
modules 210 and 220 as well as the index/text collection
230, each further described herein, to generate results in the
form of, for example, a ranked list of generated candidate
entries. The ranked list comprises candidates that may be an
entry a user accidentally misspelled.

[0026] The candidate suggestion generation module 210
generates a number of candidate words that may be the
correction of the misspelled word. The candidate suggestion
generation module 210 implements an algorithm for index-
ing, searching, and storing terms from an index (i.e., 230)
with a constrained edit distance. According to an embodi-
ment, words in the collection of documents of the enterprise
search engine 110 (i.e., the index/text collection 230) that are
within a distance of two are searched. The distance of two
is utilized based on the premise that 99.5% of all errors are
within Damerau-Levenshtein edit distance of two from the

Apr. 19,2018

misspelled word. In other embodiments, other edit distances
may be utilized by the candidate suggestion generation
module 210.

[0027] A maximum edit distance (“med”) (e.g., two) and
a threshold frequency (“tf) are defined prior to implemen-
tation of the spellcheck module 200. The threshold fre-
quency is a frequency of a term that will be considered as a
candidate word. A term that appears only one time in a
dataset is most probably a misspell, while a term that
appears tf times is more likely to be a meaningful word. In
an embodiment, tf is dependent on the size of the dataset.

[0028] FIG. 3 is an example representation 300 of the
concept of edit distance for the word “them,” with an edit
distance of one and an edit distance of two illustrated. As
shown in FIG. 3, the entries in the “edit distance 1" have one
character removed from the text “them,” and the entries in
the “edit distance 2” comprise entries with a second char-
acter removed. The delete of length one are the concatena-
tions of the two substrings of a string obtained removing a
character from the string. The deletes of length n are the set
of deletes of the deletes of length (n-1) of a string. As
another example, for the word “home” and for a med=1, the
deletes are: “ome”, “hme”, “hoe”, and “hom”; for med=2
they are: “me”, “he”, and “ho.”

[0029] The indexing portion of the algorithm for the
candidate suggestion generation module 210 comprises sort-
ing through the dataset to collect words and their frequen-
cies. As soon as a word reaches the “tf,” added to the index
are all of the deletes of length “med” of the word.

[0030] When adding the deletes, the word that originated
them is also tracked so that each delete entry contains a
frequency of “0” and a set of words that originated them.
The frequency is needed because if an actual word in the
dataset that is identical to a previously added delete (e.g.,
“me” as a word and as a delete of “home”) is encountered,
its deletes need to be added when it reaches the threshold “tf
> At the same time, a word that was found in the dataset can
become later the delete of a longer word, so a link to the
longer word is added. Both real words and deletes have two
values: frequency and set of links. For memory efficiency, it
is sufficient to store a link (an integer if words are mapped
to integers) for deletes that never appear in the dataset, and
an object containing an integer for frequency and a set/list/
array of links.

[0031] The indexing concept is illustrated in FIGS.
4A-4C, which show example indexing operations, according
to an embodiment. Diagram 400 of FIG. 4A illustrates the
operation of indexing the word “the” and the deletes of
length “1;” diagram 410 of FIG. 4B illustrates the operation
of indexing the word “he” and the deletes of length “1;” and
diagram 420 of FIG. 4C illustrates the operation of indexing
the word “her” and the deletes of length “1.”

[0032] The searching portion of the algorithm for the
candidate suggestion generation module 210 comprises the
following operation: a list of candidates are maintained with
the misspell and its deletes added to it; the searched word is
added to the candidate list; for an element from the candidate
list, if it is not already visited and it is more frequent than
“tf,” it is added to the suggestion list; for every element in
its links that is not already visited, the distance with respect
to the searched word is computed; if the distance is below
the “med,” the linked word is added to the suggestion list;
if the length of the candidate and the length of the misspell

US 2018/0107643 Al

is less than the “med, ” all of the deletes of the candidate are
added to the candidates and the process is repeated.

[0033] FIGS. 5A-5D are example searching operations,
according to an embodiment. Diagram 500 of FIG. 5A
illustrates an initial search query to search words at a
distance less than or equal to one and with a frequency
greater than zero from “the.” The next search step is illus-
trated in diagram 510 of FIG. 5B, obtaining the words “the”
links to. As shown in diagram 520 of FIG. 5C, the deletes of
“the” are then obtained; and as shown in diagram 530 of
FIG. 5D, the words linked by the deletes of “the” are
obtained.

[0034] For the storage aspect of the candidate suggestion
generation module 210, in addition to the words in the
dataset, more items are stored in the index. The amount of
additional items for each word depends on the length of the
word and the “med.” For a maximum edit distance of two,
an average word length of 5, and 100,000 dictionary entries,
1,500,000 deletes also need to be stored.

[0035] The algorithm implemented by the candidate sug-
gestion generation module 210, according to embodiments
herein, trades memory for speed and recall: it is faster than
the n-gram method (which has about 65% recall), but
guarantees a 100% recall, while being 100 to 10,000 times
faster than the fastest 100% recall method so far, at the cost
of increased memory usage.

[0036] Now turning to the candidate suggestion ranking
module 220, in an embodiment, a candidate suggestion
ranking function that utilizes a non-contextual approach uses
a linear combination of distance and probability scores,
while in another embodiment, a candidate suggestion rank-
ing function that utilizes a context sensitive approach
accounts for real-word misspells and adopts deep learning
models. In both approaches, only the documents in the
collection are needed to build a model to be used for
candidate ranking.

[0037] According to an embodiment in which a non-
contextual approach is utilized, the candidate suggestion
ranking module 120 implements a weighted linear combi-
nation of Damerau-Levenshtein distance and smoothed term
probability. This linear combination, weighted by a param-
eter alpha, is consistently better than using probability or
distance alone, based on experimentation. The absence of
contextual features allows the system to be fully language
independent and to be very fast, reaching 90% average
accuracy.

[0038] According to an embodiment, a ranking score is a
linear combination of Smoothed Term Probability (STP) and
Edit Similarity (ES). The probability of a term considering
the log of the frequency and the log of all occurrences is
computed:

STP=log(freq(correction))/log(freq(all)).

[0039] The Edit Similarity is computed as:
ES=1-(Damerau-Levenshtein(misspell, correction))/
Imisspelll.
[0040] This normalizes the distance and transforms it into
a similarity.
[0041] The final score is computed as:

wscore=(alpha)STP(correction)+(1-alpha)ES(correc-
tion, misspell).

Apr. 19,2018

[0042] Alpha is a hyper parameter to be found, ideally on
a validation set; in some embodiments, good results are
obtained with alpha=0.65.

[0043] FIG. 6 provides a diagram 600 of results of scoring
in which the candidate suggestion ranking module 220
utilizes the non-contextual scoring aspects described herein.

[0044] In an alternative embodiment in which a context
sensitive approach is utilized, the candidate suggestion
ranking module 120 implements a deep neural language
model. Given a sentence of length “s,” all possible candidate
suggestions for spellchecking the word “w,,” are ranked. All
the words in the sentence are mapped to pre-trained word
vectors. The sequence of words w,, . . . w, | are inputted to
a Recurrent Neural Network; and its last output vector is
used as a representation of the left context of the word “w,”.

[0045] The same is done for the right side: the sequence
W, ...W,,, (reversed order) is inputted to obtain a vector
representing the right context of the word w,.

[0046] The left context vector, the word w, vector, and the
right context vector are inputted to a fully connected layer
connected to a logistic unit. The final output of the logistic
unit is in [0, 1] and can be interpreted as the score of the
word w;, in the context it appears.

[0047] A forward pass in the network is run for each
candidate correction, and the computed scores are collected.
Those scores are finally used for ranking.

[0048] Diagram 700 of FIG. 7 illustrates context sensitive
scoring aspects, according to the embodiment described
herein. As shown, the words 710 are mapped to a pre-trained
word vector 720. A Recurrent Neural Network (RNN) 730
is used to obtain a vector representing the left context (742)
and another one for the right context of w, (744). A fully
connected (FC) layer 750 is connected to a logistic unit that
outputs a score in [0, 1]. Training with negative sampling is
done, and w, is replaced with candidate corrections to output
the score 760 to use for ranking.

[0049] According to embodiments, the deep learning
approach allows for alternative instantiations of the model.
According to an embodiment, pre-trained word vectors can
be carried out with various methods, including but not
limited to: cbow, skip-gram, GloVe, LSA, PLSA, LDA,
HAL, NNMF, and any other embedding method. In experi-
mentation, the skip-gram model performed best.

[0050] There are also different Recurrent Neural Network
alternatives to choose from: simple RNN, LSTM, and GRU,
for example. A simple alternative would be to also consider
a specific window of k elements and simply concatenate the
word vectors for those k elements to represent the context.
In experimentation, LSTM was the best performing alter-
native.

[0051] The fully connected layer at the end can vary in
size, deepness (there could be several stacked fully con-
nected layers, for example), and activation function. In
experimentation, one layer with hyperbolic tangent activa-
tion was the best performing alternative.

[0052] FIG. 8 is a runtime example 800 of the implemen-
tation of a spellcheck module 200 utilizing the candidate
suggestion generation module 210 and the candidate sug-
gestion ranking module 220, according to embodiments
herein; and FIG. 9 is a screenshot output example 900 of the
implementation of the spellcheck module 200, according to
embodiments herein.

US 2018/0107643 Al

[0053] FIG. 10 is a flowchart 1000 illustrating a method
for adaptive correction of misspelling utilizing the spell-
check module 200, according to embodiments herein.
[0054] At 1010, a text for spelling analysis is received.
The text may be a portion of a user-generated search query
from a user device 102 sent to the enterprise search engine
110 for generating search results based on the search query.
[0055] At 1020, the spellcheck module 200 of the enter-
prise search engine 110 creates a table of entries of words
from a corpus, such as the text collection 230 of the
enterprise search engine 110. For each word, the following
parameters may be included: a number of occurrences (e.g.,
a frequency), links to the occurrences, and alternative words
having character deletions.
[0056] At 1030, the spellcheck module 200 compares an
entry in the text, which is part of the user-generated search
query, to the table of entries having a pre-defined edit
distance (e.g., “med”=2) from the entry and a minimum
frequency of occurrence in the corpus (e.g., the text collec-
tion 230) to form a candidate set of entries.
[0057] At 1040, the spellcheck module 200 ranks the
candidate set of entries so that each candidate has a ranking.
In an embodiment, context sensitive scoring according to
embodiments herein is used for the ranking. In an alternative
embodiment, non-contextual scoring according to embodi-
ments herein is utilized for the ranking.
[0058] At 1050, the spellcheck module 200 orders at least
some of the ranked candidates based on the ranking to
identify corrections to the entry.
[0059] FIG. 11 is a flowchart 1100 illustrating a method
for adaptive correction of misspelling utilizing the spell-
check module 200, according to an additional embodiment.
[0060] At 1110, a maximum edit distance and a threshold
frequency are defined by the spellcheck module 200. These
parameters may be inputted by a user or administrator and
may vary based on features of the enterprise search engine
110 or other considerations. The maximum edit distance
“med”) and the threshold frequency (“tf”) are defined for
words of a dataset (i.e., the text collection 230) to be added
to an index.
[0061] At 1120, the spellcheck module 200 sorts the
dataset to identify the words of the dataset to add to the index
based on the threshold frequency. At 1130, the identified
words and alternative words having character deletions in
accordance with the “med” are added to the index to create
entries. That is, as soon as a word reaches the “tf,” added to
the index are all of the deletes of length “med” of the word.
[0062] At 1140, atext for spelling analysis is received. The
text may be a portion of a user-generated search query from
a user device 102 sent to the enterprise search engine 110 for
generating search results based on the search query.
[0063] At 1150, the spellcheck module 200 identifies one
or more candidate entries from the entries of the index by
obtaining from the index the entries associated with the text.
[0064] At 1160, the spellcheck module 200 ranks the
candidate set of entries so that each candidate has a ranking.
In an embodiment, non-contextual scoring according to
embodiments herein is used for the ranking. In an alternative
embodiment, context sensitive scoring according to embodi-
ments herein is utilized for the ranking.
[0065] Inan embodiment, the enterprise search engine 110
and the spellcheck module 200 may be part of a cognitive
system. A cognitive system is a specialized computer sys-
tem, or set of computer systems, configured with hardware

Apr. 19,2018

and/or software logic (in combination with hardware logic
upon which the software executes) to emulate human cog-
nitive functions. These cognitive systems apply human-like
characteristics to conveying and manipulating ideas which,
when combined with the inherent strengths of digital com-
puting, can solve problems with high accuracy and resil-
ience on a large scale. IBM Watson™ is an example of one
such cognitive system which can process human readable
language and identify inferences between text passages with
human-like accuracy at speeds far faster than human beings
and on a much larger scale.

[0066] The present invention may be a system, a method,
and/or a computer program product. The computer program
product may include a computer readable storage medium
(or media) having computer readable program instructions
thereon for causing a processor to carry out aspects of the
present invention.

[0067] The computer readable storage medium can be a
tangible device that can retain and store instructions for use
by an instruction execution device. The computer readable
storage medium may be, for example, but is not limited to,
an electronic storage device, a magnetic storage device, an
optical storage device, an electromagnetic storage device, a
semiconductor storage device, or any suitable combination
of the foregoing. A non-exhaustive list of more specific
examples of the computer readable storage medium includes
the following: a portable computer diskette, a head disk, a
random access memory (RAM), a read-only memory
(ROM), an erasable programmable read-only memory
(EPROM or Flash memory), a static random access memory
(SRAM), a portable compact disc read-only memory (CD-
ROM), a digital versatile disk (DVD), a memory stick, a
floppy disk, a mechanically encoded device such as punch-
cards or raised structures in a groove having instructions
recorded thereon, and any suitable combination of the fore-
going. A computer readable storage medium, as used herein,
is not to be construed as being transitory signals per se, such
as radio waves or other freely propagating electromagnetic
waves, electromagnetic waves propagating through a wave-
guide or other transmission media (e.g., light pulses passing
through a fiber-optic cable), or electrical signals transmitted
through a wire.

[0068] Computer readable program instructions described
herein can be downloaded to respective computing/process-
ing devices from a computer readable storage medium or to
an external computer or external storage device via a net-
work, for example, the Internet, a local area network (LAN),
a wide area network (WAN) and/or a wireless network. The
network may comprise copper transmission cables, optical
transmission fibers, wireless transmission, routers, firewalls,
switches, gateway computers, and/or edge servers. A net-
work adapter card or network interface in each computing/
processing device receives computer readable program
instructions from the network and forwards the computer
readable program instructions for storage in a computer
readable storage medium within the respective computing/
processing device.

[0069] Computer readable program instructions for carry-
ing out operations of the present invention may be assembler
instructions, instruction-set-architecture (ISA) instructions,
machine instructions, machine dependent instructions,
microcode, firmware instructions, state-setting data, or
either source code or object code written in any combination
of'one or more programming languages, including an object-

US 2018/0107643 Al

oriented programming language such as Java, Smalltalk,
C++ or the like, and conventional procedural programming
languages, such as the “C” programming language or similar
programming languages. The computer readable program
instructions may execute entirely on the user’s computer,
partly on the user’s computer, as a stand-alone software
package, partly on the user’s computer and partly on a
remote computer, or entirely on the remote computer or
server. In the latter scenario, the remote computer may be
connected to the user’s computer through any type of
network, including LAN or WAN, or the connection may be
made to an external computer (for example, through the
Internet using an Internet Service Provider). In some
embodiments, electronic circuitry including, for example,
programmable logic circuitry, field-programmable gate
arrays (FPGA), or programmable logic arrays (PLA) may
execute the computer readable program instructions by
utilizing state information of the computer readable program
instructions to personalize the electronic circuitry, in order to
perform aspects of the present invention.

[0070] Aspects of the present invention are described
herein with reference to flowchart illustrations and/or block
diagrams of methods, apparatuses (systems), and computer
program products according to embodiments of the inven-
tion. It will be understood that each block of the flowchart
illustrations and/or block diagrams, and combinations of
blocks in the flowchart illustrations and/or block diagrams,
can be implemented by computer readable program instruc-
tions.

[0071] These computer readable program instructions may
be provided to a processor of a general purpose computer,
special purpose computer, or other programmable data pro-
cessing apparatus to produce a machine, such that the
instructions, which execute via the processor of the com-
puter or other programmable data processing apparatus,
create means for implementing the functions/acts specified
in the flowchart and/or block diagram block or blocks. These
computer readable program instructions may also be stored
in a computer readable storage medium that can direct a
computer, a programmable data processing apparatus, and/
or other devices to function in a particular manner, such that
the computer readable storage medium having instructions
stored therein comprises an article of manufacture including
instructions which implement aspects of the function/act
specified in the flowchart and/or block diagram block or
blocks.

[0072] The computer readable program instructions may
also be loaded onto a computer, other programmable data
processing apparatus, or other device to cause a series of
operations steps to be performed on the computer, other
programmable apparatus, or other device to produce a
computer implemented process, such that the instructions
which execute on the computer, other programmable appa-
ratus, or other device implement the functions/acts specified
in the flowchart and/or block diagram block or blocks.

[0073] The flowchart and block diagrams in the Figures
illustrate the architecture, functionality, and operation of
possible implementations of systems, methods, and com-
puter program products according to various embodiments
of the present invention. In this regard, each block in the
flowchart or block diagrams may represent a module, seg-
ment, or portion of instructions, which comprises one or
more executable instructions for implementing the specified
logical functions. In some alternative implementations, the

Apr. 19,2018

functions noted in the block may occur out of the order noted
in the Figures. For example, two blocks shown in succession
may, in fact, be executed substantially concurrently, or the
blocks may sometimes be executed in the reverse order,
depending upon the functionality involved. It will also be
noted that each block of the block diagrams and/or flowchart
illustration, and combinations of blocks in the block dia-
grams and/or flowchart illustration, can be implemented by
special purpose hardware-based systems that perform the
specified functions or acts or carry out combinations of
special purpose hardware and computer instructions.
[0074] FIG. 12 is a block diagram of an example data
processing system 1200 in which aspects of the illustrative
embodiments are implemented. Data processing system
1200 is an example of a computer, such as a server or client,
in which computer usable code or instructions implementing
the process for illustrative embodiments of the present
invention are located. In one embodiment, FIG. 12 may
represent a server computing device.

[0075] In the depicted example, data processing system
1200 can employ a hub architecture including a north bridge
and memory controller hub (NB/MCH) 1201 and south
bridge and input/output (I/O) controller hub (SB/ICH) 1202.
Processing unit 1203, main memory 1204, and graphics
processor 1205 can be connected to the NB/MCH 1201.
Graphics processor 1205 can be connected to the NB/MCH
1201 through, for example, an accelerated graphics port
(AGP).

[0076] In the depicted example, a network adapter 1206
connects to the SB/ICH 1202. An audio adapter 1207,
keyboard and mouse adapter 1208, modem 1209, read only
memory (ROM) 1210, hard disk drive (HDD) 1211, optical
drive (e.g., CD or DVD) 1212, universal serial bus (USB)
ports and other communication ports 1213, and PCI/PCle
devices 1214 may connect to the SB/ICH 1202 through bus
system 1216. PCI/PCle devices 1214 may include Ethernet
adapters, add-in cards, and PC cards for notebook comput-
ers. ROM 1210 may be, for example, a flash basic input/
output system (BIOS). The HDD 1211 and optical drive
1212 can use an integrated drive electronics (IDE) or serial
advanced technology attachment (SATA) interface. A super
/O (SIO) device 1215 can be connected to the SB/ICH
1202.

[0077] An operating system can run on processing unit
1203. The operating system can coordinate and provide
control of various components within the data processing
system 1200. As a client, the operating system can be a
commercially available operating system. An object-ori-
ented programming system, such as the Java™ program-
ming system, may run in conjunction with the operating
system and provide calls to the operating system from the
object-oriented programs or applications executing on the
data processing system 1200. As a server, the data process-
ing system 1200 can be an IBM® eServer™ System p®
running the Advanced Interactive Executive operating sys-
tem or the Linux operating system. The data processing
system 1200 can be a symmetric multiprocessor (SMP)
system that can include a plurality of processors in the
processing unit 1203. Alternatively, a single processor sys-
tem may be employed.

[0078] Instructions for the operating system, the object-
oriented programming system, and applications or programs
are located on storage devices, such as the HDD 1211, and
are loaded into the main memory 1204 for execution by the

US 2018/0107643 Al

processing unit 1203. The processes for embodiments
described herein can be performed by the processing unit
1203 using computer usable program code, which can be
located in a memory such as, for example, main memory
1204, ROM 1210, or in one or more peripheral devices.

[0079] A bus system 1216 can be comprised of one or
more busses. The bus system 1216 can be implemented
using any type of communication fabric or architecture that
can provide for a transfer of data between different compo-
nents or devices attached to the fabric or architecture. A
communication unit such as the modem 1209 or the network
adapter 1206 can include one or more devices that can be
used to transmit and receive data.

[0080] Those of ordinary skill in the art will appreciate
that the hardware depicted in FIG. 12 may vary depending
on the implementation. Other internal hardware or periph-
eral devices, such as flash memory, equivalent non-volatile
memory, or optical disk drives may be used in addition to or
in place of the hardware depicted. Moreover, the data
processing system 1200 can take the form of any of a
number of different data processing systems, including but
not limited to, client computing devices, server computing
devices, tablet computers, laptop computers, telephone or
other communication devices, personal digital assistants,
and the like. Essentially, data processing system 1200 can be
any known or later developed data processing system with-
out architectural limitation.

[0081] The system and processes of the figures are not
exclusive. Other systems, processes, and menus may be
derived in accordance with the principles of embodiments
described herein to accomplish the same objectives. It is to
be understood that the embodiments and variations shown
and described herein are for illustration purposes only.
Modifications to the current design may be implemented by
those skilled in the art, without departing from the scope of
the embodiments. As described herein, the various systems,
subsystems, agents, managers, and processes can be imple-
mented using hardware components, software components,
and/or combinations thereof. No claim element herein is to
be construed under the provisions of 35 U.S.C. 112(f) unless
the element is expressly recited using the phrase “means
for.”

[0082] Although the invention has been described with
reference to exemplary embodiments, it is not limited
thereto. Those skilled in the art will appreciate that numer-
ous changes and modifications may be made to the preferred
embodiments of the invention and that such changes and
modifications may be made without departing from the true
spirit of the invention. It is therefore intended that the
appended claims be construed to cover all such equivalent
variations as fall within the true spirit and scope of the
invention.

We claim:

1. A computer-implemented method for adaptive correc-
tion of misspelling, the method comprising:

defining, by a processor coupled to one or more user
devices, a maximum edit distance and a threshold
frequency for words of a dataset to be added to an
index;

sorting, by the processor, the dataset to identify the words
of the dataset to add to the index based on the threshold
frequency;

Apr. 19,2018

adding, by the processor, to the index the identified words
and alternative words having character deletions in
accordance with the maximum edit distance to create
entries;

receiving, at the processor from a first user device of the
one or more user devices, a text for spelling analysis;

identifying, by the processor, one or more candidate
entries from the entries of the index by obtaining from
the index the entries associated with the text; and

ranking, by the processor, the one or more candidate
entries utilizing a non-contextual scoring approach.
2. The method of claim 1, wherein adding to the index the
identified words and the alternative words further comprises
adding links to the identified words and the alternative
words to create the entries.
3. The method of claim 2, further comprising storing in
memory associated with the processor an associated link for
the alternative words that are not part of the dataset.
4. The method of claim 1, wherein the non-contextual
scoring approach comprises a combination of Damerau-
Levenshtein edit distance and a smoothed term probability.
5. The method of claim 4, wherein the combination is
linear combination weighted by a parameter alpha compris-
ing a validation parameter.
6. The method of claim 1, further comprising ordering, by
the processor, the one or more candidate entries based on the
ranking to identify corrections to the text.
7. The method of claim 1, wherein the processor is part of
an enterprise search engine and the dataset comprises a
collection of data of the enterprise search engine.
8. A system for adaptive correction of misspelling, the
system comprising:
a processor coupled to one or more user devices to receive
user-generated search queries from the one or more
user devices, the processor configured to:
define a maximum edit distance and a threshold fre-
quency for words of a dataset to be added to an
index;

sort the dataset to identify the words of the dataset to
add to the index based on the threshold frequency;

add to the index the identified words and alternative
words having character deletions in accordance with
the maximum edit distance to create entries;

receive from a first user device of the one or more user
devices a text for spelling analysis;

identify one or more candidate entries from the entries
of the index by obtaining from the index the entries
associated with the text; and

rank the one or more candidate entries utilizing a
non-contextual scoring approach.

9. The system of claim 8, wherein adding to the index the
identified words and the alternative words further comprises
adding links to the identified words and the alternative
words to create the entries.

10. The system of claim 9, wherein the processor is
further configured to store in memory associated with the
processor an associated link for the alternative words that
are not part of the dataset.

11. The system of claim 8, wherein the non-contextual
scoring approach comprises a combination of Damerau-
Levenshtein edit distance and a smoothed term probability.

12. The system of claim 11, wherein the combination is
linear combination weighted by a parameter alpha compris-
ing a validation parameter.

US 2018/0107643 Al

13. The system of claim 8, wherein the processor is
further configured to order the one or more candidate entries
based on the ranking to identify corrections to the text.

14. The system of claim 8, wherein the processor is part
of an enterprise search engine and the dataset comprises a
collection of data of the enterprise search engine.

15. A computer program product for adaptive correction
of misspelling, the computer program product comprising a
computer readable storage medium having program instruc-
tions embodied therewith, the program instructions execut-
able by a processor coupled to one or more user devices to
receive user-generated search queries from the one or more
user devices to cause the processor to:

define a maximum edit distance and a threshold frequency

for words of a dataset to be added to an index;

sort the dataset to identify the words of the dataset to add

to the index based on the threshold frequency;

add to the index the identified words and alternative

words having character deletions in accordance with
the maximum edit distance to create entries;

receive from a first user device of the one or more user

devices a text for spelling analysis;

identify one or more candidate entries from the entries of

the index by obtaining from the index the entries
associated with the text; and

Apr. 19,2018

rank the one or more candidate entries utilizing a non-
contextual scoring approach.

16. The computer program product of claim 15, wherein
adding to the index the identified words and the alternative
words further comprises adding links to the identified words
and the alternative words to create the entries.

17. The computer program product of claim 16, wherein
the program instructions further cause the processor to store
in memory associated with the processor an associated link
for the alternative words that are not part of the dataset.

18. The computer program product of claim 15, wherein
the non-contextual scoring approach comprises a combina-
tion of Damerau-Levenshtein edit distance and a smoothed
term probability.

19. The computer program product of claim 18, wherein
the combination is linear combination weighted by a param-
eter alpha comprising a validation parameter.

20. The computer program product of claim 15, wherein
the program instructions further cause the processor to order
the one or more candidate entries based on the ranking to
identify corrections to the text.

#* #* #* #* #*

