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Abstract

Detecting differences in generalization ability between models for visual question
answering tasks has proven to be surprisingly difficult. We propose a new statistic,
asymptotic sample complexity, for model comparison, and construct a synthetic data
distribution to compare a strong baseline CNN-LSTM model to a structured neural
network with powerful inductive biases. Our metric identifies a clear improvement
in the structured model’s generalization ability relative to the baseline despite their
similarity under existing metrics.

1 Introduction

People are exposed to a wide variety of visual situations, but this variety is still impossibly small
relative to all the possible combinations of events and objects that could occur in the real world.
Humans are nevertheless capable of recognizing and behaving in unusual situations without any
undue difficulty.

Good visual question answering models ought to be similarly flexible. However, determining whether
one model represents genuine progress over another has not been straightforward [6, 8].

One reason for this is dataset bias [26]: simple models that can exploit dataset statistics as a shallow
source of commonsense knowledge can exhibit surprisingly high performance when evaluated
in standard ways [3]. VQA research is especially vulnerable to dataset bias due to (necessarily)
complicated dataset creation processes with open-ended annotator prompts. In natural images selected
by humans as interesting or salient (e.g. Flickr images) some types of objects appear much more
frequently than others. Moreover, most types of objects almost never appear together; even when they
do, human annotators asked to quickly list a few salient relationships per image may unconsciously
favor certain kinds of relationships over others [15].

To measure model behavior in unusual situations and expose dataset adaptation, the metric used to
evaluate a model (e.g. top-1 accuracy) can be computed on a test dataset reweighted by the inverse of
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Figure 1: Hypothesis: models that incorporate syntactic and semantic prior knowledge exhibit much
less dramatic asymptotic sample complexity

some measure of data frequency (e.g. the product of normalized empirical object frequencies):
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Unfortunately, evaluation with reweighted data may not be enough in practice to distinguish between
models. That is, the new metric does not necessarily capture the relationship between the complexity
of the data distribution (e.g. the number of object types) and the dataset size, which is often determined
by exogenous factors like cost and collection time. Two models with equal reweighted accuracy on
a given dataset may perform differently on a dataset with twice the number of objects or half the
number of samples.

This argument suggests that the true measure of interest is the rate at which the number of samples
required for a model to achieve a given accuracy level on reweighted data increases as the complexity
of the data distribution grows, the asymptotic sample complexity.

The hypothesis is that better models for VQA should "scale with the world (as in Figure 1)." For
models with better asymptotic sample complexity, as the underlying complexity of the data increases,
less additional data points are required to maintain the same level of performance.

To test this hypothesis, asymptotic sample complexity is estimated by training two VQA models on a
synthetic data distribution that reflects statistics extracted from the Visual Genome (Section 6.2). The
two models, a strong baseline recurrent neural network model that is competitive with state-of-the-art
models on real world VQA datasets [8] and a simple structured neural network model, serve as a
stand-in for the unstructured and structured models of the hypothesis, respectively.

2 Data

2.1 SimTown

In recent years, there has been a proliferation of publicly available synthetic datasets [28, 27, 9,
7, 31], which are important tools in grounded language understanding research. Directly testing
the hypothesis that two models with the same metric performance can exhibit different asymptotic
behavior requires a generative process with easily adjustable mechanisms to modify both complexity
and dataset size.

To implement these complexity levers, this paper introduces a custom simulated environment built in
Unity3D called SimTown (Section 6.4). SimTown is a cartoon 3D town in which roads, sidewalks,
trees, buildings, cars, pedestrians and other objects can be placed, configured, and moved program-
matically. Additionally, the environment can extract high-level semantic and visual ground-truth
information from scenes as specified within a grounded language understanding task.

2.2 Generating synthetic visual question answering data

In effect, SimTown enables the construction of a simple generative model of visual question answering
datasets with clear control over the richness of the visual and linguistic world.
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To isolate the problem of generalizing to low-frequency questions and scenes, two strong constraints
are placed on the linguistic structure.

First, synthetic questions are restricted to a simple form: yes/no questions that represent a single
binary relationship, like "is a red truck left of a green car (in this scene)?" While simple, understanding
binary relationships is a key challenge in grounded language understanding [16, 4, 30, 32, 20]

Second, an analysis of the Visual Genome (VG) dataset (Table 2) shows that spatial relationships are
both the simplest and by far the most common type of relationship present in the VG relationship
corpus. Thus, a restriction is made to planar spatial relationships, e.g. "left of" and "right of."

Further restrictions are placed on the types of images generated in SimTown, with street scenes
always containing either two or three different vehicles placed in random, non-overlapping locations
on a two-way road. The third vehicle is intended to distract the model and make the task more
difficult. To simulate additional visual variation, a random row of buildings with mailboxes and trees
are included in the background, along with random weather conditions.

Within a dataset, each example is a tuple of an image, question, and answer. To generate a single
valid tuple, rejection sampling cycles through potential image, question, answer pairs until a scene
matches the linguistic description.

In detail, the process first samples a 3D scene and an answer (true or false), renders an image from the
scene at a fixed location camera, then generates questions until the question’s logical form evaluated
on the latent scene information (ground-truth vehicle positions and types) matches the answer. All
datasets have an equal number of true and false examples.

Rather than choosing the types of the vehicles in training and validation datasets uniformly at random,
the frequency distribution of the £ most common entities from the VG relationship corpus is computed,
and that is set as the frequency distribution for the vehicle types (see Section 6.3 for details). Note, as
an approximation to evaluating the model on reweighted accuracy (equation 1), the test set object
frequency distributions are instead uniform. As a result, relationships from the tail of the distributions
are likely to appear in the test sets.

3 Models

The data requirements for two different types of models are examined. The first type is an unstructured
deep neural network, denoted as CNN-LSTM, whose architecture is a simplification of several strong
baseline models for visual question answering [18, 32]. As [6, 8] show, with a carefully specified
objective, these models achieve performance parity with the more complex models described in e.g.
[14, 2, 29], so CNN-LSTM performance in SimTown should proxy this line of work.

The common feature of the class of models represented by the CNN-LSTM is their complete lack of
prior knowledge outside of the use of convolutional sub-networks. However, there are two structural
properties of spatial relationships in SimTown that could be incorporated to make a model more
effective. Syntactically, relations are made up of two objects which may be drawn from same
universal set and a predicate which is a function of the two objects. Furthermore, the semantics of
spatial relationships depends explicitly on the spatial properties, such as pose and position, of their
constituent objects.

The second type of models is a simple structured neural network model, which we call a Place-Binder
Network (PBN), that is related in spirit to the relationship modules in [13] and [20] and relation



networks [22]. The PBN architecture 3 is a straightforward exploitation of these structural properties
of spatial relationships. To exploit the syntactic property, PBN shares object information across both
relationship slots through weight-tying and computes the final truth function directly on estimates
of the two objects’ positions (inspired by recent work on deep models with explicit object variables
[1, 17] and on CNNs for object detection [21]). Along with the objects’ position, an embedding of
the predicate label feed into the last MLP component, allowing the model to potentially exploit the
spatial semantics, similar to work on relational models [19].

Within the PBN bounding box module (Figure 4), object label embeddings are concatenated to input
images and processed through a conventional stack of convolutional layers followed directly by fully
connected layers. Notably, by adding object label embeddings to the bounding box module, the
relational query can influence the detection process.
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The experiments here are intended to directly estimate the curves in our hypothesis (Figure 1): how
much data is necessary for the CNN-LSTM and PBN models to achieve a given level of reweighted
accuracy? To estimate this measure, SimTown datasets are generated with each of 5, 15, 31, and
60 entities and 2,000, 5,000, 10,000, 20,000, 30,000, 40,000, and 60,000 training samples with and
without an additional distractor car on the road. Both models are trained and evaluated on each
dataset, and for each number of entities, the minimum number of samples required to reach 75%,
85%, 90%, and 95% test accuracy are collected (experimental details are available in Section 6.5).
Results are shown in figures 5 - 10, where dotted lines denote a model failed to achieve a target
accuracy on the largest dataset (60,000 samples).

The experiments reveal multiple datasets where both models achieve at least 90% reweighted accuracy
(Figure 7 and 10), yet differ dramatically in generalization ability. A model with poor asymptotic
sample complexity, like the CNN-LSTM, trained only on such a dataset would look competitive on
accuracy, but require much larger datasets to maintain performance for any increase in complexity!

Furthermore, comparing the asymptotic sample complexity curves for the two models clearly favors
the PBN (Figure 6 and 9) over the CNN-LSTM (Figure 5 and 8). These results match our hypothesis
and intuitions, where structured models can achieve the same level of accuracy with less additional



data as entity count increases. In fact, on the more difficult distractor datasets, the CNN-LSTM
requires many more samples to reach the same accuracy threshold as the PBN, sometimes even failing
to reach the threshold altogether.

5 Conclusion

This paper introduces asymptotic sample complexity to compare models for visual question answering.
Despite the difficulty of identifying clear improvements in VQA generalization with conventional
metrics like accuracy [6], we hypothesized asymptotic sample complexity would distinguish per-
formance between a structured model (PBN) and an unstructured model (CNN-LSTM). To test the
hypothesis, synthetic datasets are generated inside SimTown, a tool we introduce for generating
synthetic grounded language understanding tasks. Models trained on SimTown datasets reveal similar
accuracy scores, yet diverging asymptotic sample complexity, confirming our hypothesis.
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Data type #Instances

Images 108,777
Region Descriptions 5.4M
Question-Answer pairs 1.7M
Objects 3.8M
Attributes 2.8M
Relationships 2.3M

Table 1: An overview of the Visual Genome

Spatial #Rel | Physical #Rel | Action #Rel
On 707901 | Sit on 15687 | Have 278647
In 241004 | Stand 8250 | Wear 51996
Above 57000 | Hang on 6105 | Hold 43151
Behind 47398 | Lay on 6100 | Carry 5825
Nextto 46000 | Cover to 5316 | Eat 5218
Next 27490 | Park on 2728 | Walk 4723
Under 19134 | Onback of 1926 | Play 4098
Front 18000 | Grow on 1097 | Watch 3987

Table 2: Counts of Visual Genome relationships

6 Appendix

6.1 Visual Genome preprocessing

Visual Genome is a large scale Visual Question Answering dataset. It contains more than 100,000
images tagged with regional descriptions, objects with attributes and mutual relationships, and
question-answer pairs regarding the images. Statistics of the dataset are summarized in Table 1.

The free-form nature of the data generation prompt meant that the collected data was noisy, so we
performed the following additional preprocessing beyond [11]:

. Removing the verb “to be”

. Removing determiners

. Removing inflections such as plurals and verb tenses by lemmatization

Spelling correction

For entities, removing anything that is not a noun (e.g. “red hydrant” to “hydrant”)

I

Throwing away all predicates below a frequency threshold

After consolidating any resulting duplicates, we were left with roughly 2,000 unique relationships. In
Table 2 we show counts for the most common relationships after preprocessing organized in three
groups: spatial, physical and action. Spatial is clearly the most dense type of relationships, but their
semantics is often ambiguous.

6.2 Sparsity in Visual Genome

The richness of language and vision is such that, for all its size and complexity, the VG is still far
from providing adequate sample coverage of even the simplest grounded spatial relationships.

We analyzed the co-occurrence of entities in images 11 and simple spatial relationships “left” and
“right” that are not present in the corpus of annotations, but can be easily extracted from the bounding
boxes. We observed a high degree of sparsity.

For instance we discovered that, despite a notable over representation of giraffes, the VG contains
only one example of giraffe on the left of a person and eight examples of a person on the left of
giraffes, meaning that the same model would need enough capacity to compensate for high imbalance
in training data for the two classes.



Figure 11: A heatmap of the frequency of top 100 most frequent entities occurring with each
other in the same image in VG. Entities are sorted by frequency, and a darker square means higher
co-occurrence frequency.

Such imbalances may be inevitable in any human-annotated dataset [15] and we empirically found
that these unbalances are present in VG.

6.3 Question generation
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Figure 12: Matching the marginal distributions of Figure 13: Drawing test sets from the long tail of
subjects and objects in VG and SimTown the training distribution

the probability of generating an utterance (subject s;, relation r;, object o) is
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is the marginal probability of the ¢-th most frequent subject in the Visual Genome relationship corpus,
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is the marginal probability of the k-th most frequent object in the VG relationship corpus,

and




is the probability of selecting predicate r;, i.e. we are equally likely to generate any relationship. We
chose not to model the covariance between entities because the mapping from objects in SimTown
to entities in the Visual Genome is fixed but arbitrary, so the common-sense knowledge encoded
in object co-occurrence (e.g. tables are essentially never on top of chairs) is no longer intuitively
applicable.

6.4 SimTown sample images
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6.5 Experiment details

To control for the effects of clutter in natural images on relationship understanding, we considered two
different classes of SimTown datasets: the first class had images with two cars and one relationship
annotation, and the second class always had an additional distractor car that was randomly generated
and then evaluated to verify that it did not satisfy either the positive or negative relationship associated
with the image. All test datasets had 2000 examples.

To preserve spatial information in the visual inputs and make model comparison easier across experi-
ments, two model architectures are trained: a single high-level convolutional network architecture
inspired by the VGG ImageNet convolutional network [23] and the all-convolutional networks of
[24]. This architecture consisted of 3 layers of 3 x 3 convolutions with stride 2 followed by batch
normalization [5], ReLU activations [12], and dropout regularization [25], finally topped with a
multilayer perceptron with ReLU activations with hidden sizes 128, 100, 50, 25, 25, 4. The CNN
in the CNN-LSTM model had layers of 20, 50, and 100 filters, and the CNNs in the PBN models
always had layers of 32, 64, and 64 filters. The LSTM in the CNN-LSTM model had a single layer
with a hidden state size of 128.

We randomly initialized all the weights in all the models and always updated model weights together
using the same global learning rate. The PBNs were trained to jointly minimize bounding box
regression losses and the verification binary classification loss. All models were trained with stochastic
gradient descent with batch size 128 using Adam [10] with learning rate 0.001, and training was
stopped after accuracy on a set of 1,000 held-out validation examples (drawn from the training
distributions) did not increase for 10 epochs. All hyperparameters (learning rate, convolutional
network size, LSTM hidden state size) were selected for all experiments beforehand by using random
search to maximize validation accuracy on the 31 entity, 20k training sample, no distractor dataset.
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